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FOREWORD

This report is one of a series of research efforts designed to improve
the selection and classification efficiency of the Armed Services Vocational
Aptitude Battery (ASVAB). The research bears directly on theoretical issues
critical to the comparison of differential assignment theory (DAT) with
alternative theories and approaches. At the same time, the research provides
the empirical basis for designing nine classification-efficient test
composites for assignment.

DAT principles applicable to the construction of new and improved
Aptitude Areas (AA) include: (1) the best test composites for either selection
or classification are least squares (LSE) c¢omposites; (2) an increase in
battery size provides a steady increase in classification efficiency as
measured by mean predicted performance (MPP); and (3) Brogden’s 1959 model of
MPP provides an approximation of the relationships of the validities (R) of
LSEs, the intercorrelation (r) among these LSEs and MPP. The greatest hope
for increasing classification efficiency MPP from either test selection or
from reclustering of jobs into job families is through obtaining a smaller
value of r. A smaller value of r tends to result from an increase in battery
size, while the effect of an increase in composite size whose tests are
selected from a fixed-size battery is more likely to increase the values of r.
However, when tests for composites are selected from an experimental pool, the
union of the sets of tests in each composite (implied battery size) increases
as the number of tests in each composite increases. This relationship is such
that the overall effect on r is downward and classification efficiency upward
as composite size increases.

EDGAR M. JOHNSON
Director
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DEVELOPING NEW TEST SELECTION AND WEIGHT STABILIZATION TECHNIQUES FOR
DESIGNING CLASSIFICATION EFFICIENT COMPOSITES

EXECUTIVE SUMMARY

Requirement:

The major objective of this research is the development and evaluation
of a methodology for potentially improving the predicted performance of
soldiers optimally assigned to job families, in contrast with the traditional
methodology that uses incremental predicted validity as the figure of merit
and is based on the goal of improving the prediction of performance across
MOS. A two-stage selection and classification model is visualized for the
purposes of this study, making the selection stage independent of the latter
classification and assignment stage. The research specifies techniques to
create tailored job family composites and also provides an empirical basis for
the comparison of differential assignment theory with alternative theories.

Procedure:

Experiment 1 examines the effect of: (1) increasing the number of tests
included in an assignment composite; (2) using test pools of different sizes
and test content as a source of selecting tests; (3) using either an index or
differential validity or of predictive validity as a means of selecting tests
for composites; and (4) stabilizing test regression weights within composites
by the use of positive weights only.

Experiment 2 addresses the operational practicalities of constructing
differentially efficient test composites by incorporating different back
sample sizes for selecting tests and for calculating regression weights.
Additionally, unit test weighting is compared with optimal full least squares
weights as a means of stabilizing regression weights.

The research approach adopted involves a simulation of the Army
selection and <classification process using Project A validity data.
Comparisons of classification efficiency obtained under each experimental
condition are reported in terms of mean predicted performance (MPP).

Findings:

The results confirm the predictions of Johnson, Zeidner, & Scholarios
(1990) and Zeidner and Johnson (1991c) that the use of efficient test
selection procedures and least squares weights for tests in assignment
composites can improve the utility of the Army assignment process. The two
experiments reported here show that optimal classification provides twice as
much gain in predicted performance as gain from selection alone. Results also
show that when predictors are selected separately for job family assignment
composites (as contrasted to selecting predictors for a battery of fixed
size), an index of predictive validity (PV) is superior to Horst’s modified Hy
index.




Utilization of Findings:

The issues involved in this study have a number of significant
operational implications concerning how samples and sets of predictor
variables should be selected for analysis, and how operational job family
assignment composites should best be designed. While LSE composites
consisting of all nine ASVAB tests provide the maximum obtainable

classification efficiency, it appears that five-test composites, tailored to
s reht o

the operational job families and selected to provide—only—positis
can provide an acceptable approximation of the maximum obtainable MPP.

In defining operational composites from an existing battery or a new
operational battery from an experimental test pool, consideration should be
given to combining job families or including additional jobs into a job family
when the combined analysis sample size is less than 1,000. Large families
should be considered for shredding into two or more homogeneous families to
provide higher overall MPP and more even quality distribution of personnel
across job families.

Differential assignment theory supports the supposition that an improved
test selection index reflecting both predictive validity and the average
intercorrelation among least squares estimates (LSEs) of predicted performance
may eventually be found to be best for classification efficiency.
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DEVELOPING NEW TEST SELECTION AND WEIGHT STABILIZATION TECHNIQUES FOR
DESIGNING CLASSIFICATION EFFICIENT COMPOSITES

Introduction

The objectives of the present research are both theoretical and practical.
First, it provides empirical evidence for the predictions of Differential
Assignment Theory (DAT) and bears directly on theoretical issues critical to the
comparison of DAT with alternative theories and approaches. Second, the research
provides the empirical basis for designing personnel selection and classification
systems and relates to acknowledged problems in the U.S. Army operational
selection and classification system.

DAT predicts an increase in the mean predicted benefit of systematic selection
and classification from the use of tailored test composites for assignment. This
prediction has specific implications for the way in which composites are
constructed, and also suggests that different approaches may be appropriate for
the purposes of selection and classification. Built on the premises of Brogden
(1951, 1959) and Horst (1954, 1955), DAT argues for the use of tailored tests in
operational test batteries which are selected to maximize differential validity.
The theory further predicts a positive relationship between the number of tests

in an operational battery and the mean predicted performance (MPP) gain when all
variables used to assign an applicant group are optimal least squares estimates.
Hence, the larger the number of optimally weighted tests in a classification
battery the greater should be the gain in performance.

DAT's predictions contrast a mixture of g theory and validity generalization
concepts, currently the more commonly accepted theory and practice in selection
and classification. This theory has endorsed the use of assignment composites
comprising tests selected to maximize predictive validity in a back sample and,
as a direct consequence, emphasizes a single measure of general cognitive ability
(g). Theorists who argue that the same measures are appropriate for selection
and classification also usually regard the amount of incremental predictive
validity over g provided by additional measures as the relevant basis for
determining if anything other than general cognitive ability is required for the
construction of assignment composites. One result has been the acceptance by
many investigators of aptitude composites consisting of measures of g, and
perhaps one or two measures of perceptual or psychomotor ability, as sufficient
for classification (e.g., Hunter & Hunter, 1984; Schmidt, Hunter, & Larson,
1988).

Recent model sampling research based on designated population values derived from
Project A has shown an increase in the mean criterion score of a single applicant
group when test batteries constructed to maximize differential validity, rather
than predictive validity, are used as full least squares assignment composites
(Johnson, Zeidner, and Scholaries, 1990). This research also showed that larger,
more diverse, test batteries resulted in a greater gain than did small batteries,
thus contradicting one of the principles on which the use of g-based composites
for classification is based.

The results of Johnson, et al.'s (1990) research suggest the value of DAT
principles for the construction of assignment composites of optimally selected
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and weighted tests drawn from a single battery and targeting a job family or
smaller group of jobs. Although the more common operational situation calls for
the selection of tests from a predetermined operational battery to form job-
specific assignment composites, the direct selection of tests from an
experimental battery to form test composites could provide an alternative
approach. Prior to this study it had not been established whether a test
selection index of differential efficiency would provide a gain over an index of
predictive validity, or whether the use of additional tests in each composite,
as compared to the three-test composites presently used by the Army, would
provide higher MPP.

The present research expands on the findings of Johnson and Zeidner (1991),
Johnson, Zeidner and Leaman (1992), Johnson, Zeidner and Scholarios (1990),
Statman (1993), Whetzel (1991) gZeidner and Johnson (1991c), and Zeidner and
Johnson (in press) to examine whether an appropriately modified differential
validity index provides comparable benefits when used to create tailored
assignment test composites specific to each job-family, as compared to the
creation of test batteries in which all tests are used to form each assignment
composite. It also explores the effect of methods for improving weight
stability that have been largely designed to reduce the shrinkage of tailored
test composites in cross samples (Hunter, 1986). Some investigators in service
laboratories believe they are reducing the instability of test weights across
job-family aptitude area composites by use of unit weights. Three alternative
methods of weight stabilization are investigated in the two experiments reported
here: (1) the use of unit weights, (2) the restriction of regression weights to
positive values, and (3) the obtaining of better estimates of the covariances
among predictors in the youth population by aggregating covariances across job

samples.

Experiment 1 examines the effects of: (1) increasing the number of tests
included in a composite (2) using test pools of different size and test content
as a source of selecting tests (3) wusing either predictive validity or
differential validity as a standard for the selection of tests for composites and
(4) stabilizing test regression weights within composites by the use of positive
weights only.

Experiment 2 addresses the operational practicalities of constructing
differentially efficient composites by incorporating different back sample sizes
for achieving test selection and the calculation of regression weights. Back
samples and back validity traditionally refers to using the same sample for
performing test selection and/or determining best weights as is used in computing
a correlation coefficiency for the same test composites. As in Experiment 1, the
effects of using different operational test batteries and of increasing the
number of tests in the composite also are examined. In addition, unit test
weighting is compared to optimal full least squares weighting as a more direct
assessment of the Army's method for stabilizing regression weights, and the full
least squares weights themselves are derived both from aggregate and separate
(non-aggregated) job families. Each of these methods represents an alternative
method of stabilizing regression estimates.

In each study, the DAT research paradigm is used to investigate the effect
of the experimental assignment variables on the criterion measure of mean
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predicted performance (MPP). A typical research paradigm for DAT calls for the
generation of an analysis sample based on the parameters of a designated
population. The present studies use the empirical data from the Army's Selection
and Classification Project (Project A) to define the population. From these
population parameters, it is possible to generate synthetic test scores in
standard score form that have the same expected covariances and validities as are
predicted from empirical samples drawn from the designated population. MPP is
measured after a personnel selection and classification system has been simulated
and all "individuals" selected from the applicant group have been optimally
assigned to job families.

Background

Previous model sampling research, drawing on data from the Army's Selection
and Classification Project (Project A) to define a designated population, has
indicated the potential benefits of capitalizing on differential validity in the
creation of assignment composites. Johnson, Zeidner, and Scholarios (1990)
provided empirical evidence that tests selected using Horst's (1954) index of
differential efficiency (Hq), and further selected from a heterogeneous pool of
tests, can exceed the MPP provided by the best nine-test battery selected using
predictive validity. In a follow-up to this study, Scholarios, Johnson, and
Zeidner (in progress) also showed that the Hy battery resulted in higher MPP than
did the present Armed Services Vocational Aptitude Battery (ASVAB). Furthermore,
in both these studies, assignment variables based on a battery of 10 optimally
weighted predictors resulted in greater MPP than S-predictor batteries. This
finding appears to be quite at odds with prior conclusions reported in the
literature that a composite of no more than three or four tests, chosen for their
predictive validity, provides the greatest efficiency (measured in terms of
incremental validity) for both selection and assignment to multiple jobs (e.g.
Hunter, Crosson and Friedman, 1985; Schmidt, Hunter, and Larson, 1988).

"Results of this model sampling research are O id bl
significance given that ASVAB-derived test composites tailored for each job
family are utilized in the Army's current selection and classification process.

 The selection of tests from the ASVAR for use in the current aptitude areas(AAs)
has been based primarily on the examination of predictive validity (e.g. Maier
and Grafton, 1981). In the existing system, the AAs are essentially used as if
selection accomplished in conjunction with a minimum cut score for each MOS were
their sole purpose. Evidence suggests that the operational AAs possess
reasonable predictive validity for a variety of criterion measures; that is, they
are approximately as valid as g against the criterion for each job family
(McLaughlin, et al., 1984; Hunter, et al., 1985). But, consequently, they are
virtually ineffective for differentiating between jobs, i.e., most of the
composites are as valid for jobs in other job families as for the ones to which
they have been matched (Zeidner, 1987). Indeed, recent model sampling
experiments have shown a negative gain in MPP from using the AAs currently
adopted by the Army in the context of an optimal assignment algorithm (Johnson,
Zeidner, and Leaman, 1992; Statman, 1992).

I R S, |

The central theme of the present research bears on the credibility of DAT
as an alternative to either g theory or specific aptitude theory for designing
test composites. One alternative to DAT argues for the sufficiency of a single
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measure of g to accomplish the prediction of performance for different jobs. The
other theory argues for the use of incremental validity for the evaluation of
tailored tests in the context of multiple jobs.

In the eyes of many g theorists and validity generalization proponents,
evidence which indicates other than the sufficiency of g is explained away as
statistical artifact, such as inflation due to unstable regression weights or
other sampling error (Hunter, 1986; Hunter et al., 1985). DAT, by contrast,
measures test battery efficiency in terms of MPP, and predicts an advantage from
using assignment variables (AVs) possessing differential validity (DV) across
multiple jobs. This DV can be achieved in several ways; e.g. the use of measures
other than g which are selected for DV or by_optimal weighting of measures to
achieve maximum DV results in least squares assignment composites (Johnson &
Zeidner, 1991; Zeidner & Johnson, in press).

DAT's predictions for the creation of operational batteries which form
least squares assignment composites, using all tests in the battery, have already
found empirical support (Johnson, et al., 1990; scholarios, et al., 1994).
Questions remain, however, when one considers the direct selection and weighting
of tests for composites for different job families, when that selection is
accomplished separately for each job family. The issue of operational importance
is how can a new set of more effective test composites be identified as a
replacement for the ineffective operational AAs currently used by the Army. The
following operationally~relevant questions are addressed by the two experiments
reported here.

First, does the gain in MPP resulting from the addition of more tests to
each test composite drop off as rapidly as most g-theorists would predict?
Alternatively, is the relationship between the number of tests in a composite and
MPP approximately the same as the already known relationship between the size of
a test battery and the magnitude of MPP after optimal assignment to jobs? This
research examines how much MPP is lost from using three-test, five-test or nine-
test composites instead of full least squares (FLS) assignment composites.

Second, does an index of differential validity provide the same gain over
an index of predictive validity when selecting tests for specific job family
composites rather than for test batteries? Specifically, when tests are being
separately selected for each aptitude composite, and the goal is to maximize MPP,
is a modification of Horst's index of differential validity index (Hg), or
alternatively, of predictive validity, the preferred test selection index?

Third, when selecting tests for separate job family composites, it becomes
vital to consider the test pool from which tests will be selected and hence the
“implied" test battery necessary to achieve selection and classification across
all job families using the total set of selected test composites. The
operational test battery, ASVAB, consists of nine tests that appear to provide
sufficient differential information regarding predicted performance to achieve
statistically and practically significant gains in MPP after optimal assignment.
A better operational battery would be provided by the use of a larger number of
tests with a different (i.e. non-cognitive) orientation from the tests contained
in the ASVAB. The third question addressed, accordingly, is what is the effect
of using either the ASVAB or the more heterogeneous pool of 29 Project A tests
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as a source of tests for composites? Size and heterogeneity of test pools are
confounded in this experiment.

Fourth, the issue of instability in regression weights can be addressed by
exploring alternative methods of test weight stabilization relative to

conventional full least squares estimates.  Each experiment —examines one
experimental method for achieving stable weights. Experiment 1 assesses the loss
in MPP resulting from the requirement that tests in new aptitude composites are
all positively weighted and Experiment 2 examines the effects of unit weighting
as used in the Army's current composites. Experiment 2 introduces an additional
element of weight stabilization. The more common method of computing test weights
by making separate use of each job validity sample to compute predictor
intercorrelations is compared to the aggregation of predictor covariances across
all job validity samples to provide a more stable estimate of the population
covariances. In the latter method of estimating regression weights, some
consistency between predictor covariance estimates and validity estimates is
sacrificed in the hope of achieving increased stabilization of the predictor

covariance estimates.

Finally, are the relatively cmall sizes of empirical back samples used for
test selection and the calculation of regression weights adequate to overcome the
effects of sampling error in the selection of tests and computation of weights?

Experiment 2 is designed to contrast relatively small sample sizes resembling
the Project A concurrent validation job samples with larger analysis samples.

Research Method
Designated Population

The predictor and criterion data for the two experiments were derived from
the concurrent validation phase of the Army's Selection and Classification
Project (Project A). In Project A, samples of soldiers assigned to one of the 19
Military Occupational Specialties (MOS) selected for the study were administered
twenty experimental predictors. The nine tests of the ASVAB and criterion
measures provided scores for a total of 29 predictor variables and five criterion
components (Young, et al., 1990) for all soldiers in these MOS validation
samples. The 29 Project A predictors used in the present experiments are shown
in Table 1. Only one of the five criterion variables, the "core technical" MOS
specific criterion, was used, consistent with Project A research indicating that
the job-specific criterion alone benefitted from the use of unique predictor
equations for optimal prediction in different jobs (Wise, McHenry, and Campbell,
1990). Appendix A provides a further discussion of criterion issues.

The covariances among the 29 predictor variables and the validities of
these 29 predictors against each of the 19 MOS specific criteria were corrected
for restriction in range and unreliability of criteria (see Scholarios, 1990 and
Johnson, Zeidner, & Leaman, 1992). The correction for restriction in range was
accomplished in two stages. First, variances and covariances of the predictor
scores were corrected back to the youth population, assuming direct selection
effects bn the ASVAB tests (for which youth population covariances were available
(Mitchell and Hanser, 1984)) and assuming indirect selection effects with respect
to the other 20 Project A predictors. A sample covariance matrix among the 29




Table 1
ASVAB and Experimental Project A Predictor Measures

Code Predictor

ASVAB tests

GS General Science

AR Arithmetic Reasoning

NO Numerical Operations

cs Coding Speed

AS Auto Shop Information
MK Mathematical Knowledge
MC Mechanical Comprehension
EI Electronics Information
VE Verbal ability

Project A composite predictors

Paper-and-pencil spatial composite
SPAT Spatial composite

Perceptual-psychomotor composites

CPAC Complex perceptual accuracy

CPSP Complex perceptual speed composite
NMSA Number speed and accuracy

PSYM Psychomotor composite

SRAC Simple reaction accuracy composite
SRSP Simple reaction speed composite

Job orientation composites

AUTO Autonomy composite
SUPP Organizational/Co-worker support
ROUT Routine composite

Temperament & biodata composites

ADJU Adjustment composite

DEPN Dependability composite

COND Physical condition composite

SURG Achievement orientation composite

Interest composites

AUDI Audiovisual interest composite
COMB Combat interest composite

FSER Food service interest composite
PSER Protective service interest
TECH Technical interest composite
MACH Machinery interest composite

Source: Peterson, et al. (1990)




predictors was obtained by aggregating the covariances from all 19 MOS validity
samples. The corrected covariance matrix represented an estimate of the
covariance in the youth population. Second, the validities computed in the
separate MOS validity samples were corrected using the corrected covariance
matrix as the population matrix subject to direct selection. A further
correction was applied to these data by Johnson, et al. (1992) because the
covariances among the predicted performance scores were not positive semi-
definite (see Whetzel (1991) for a full description).

The designated population was defined by the corrected 29 by 29 predictor
intercorrelations matrix and the corrected 19 by 29 validity matrix for both
restriction in range and criterion reliability. For the purposes of this
experiment, one of the 19 MOS was eliminated from the data since its sample size
was too small to permit obtaining stable validities. In addition, validities for
the nine Army AA composites were calculated by averaging of the validities for
the appropriate jobs. Table 2 shows the nine operational job families, with
related MOS, used in the present experiments.

Research Paradigm

The DAT research paradigm described in Figure 1 was applied to each
experiment. Synthetic scores generated from the parameters of the designated
population are used to form the three analysis samples and the thirty cross
samples.

The generation of the analysis samples of synthetic scores simulates the
drawing of individuals with 29 predictor scores and one criterion score from the
designated population to form separate validation samples for each MOS. These
generated validity samples are then either used separately (non-aggregated
samples), or consolidated into the three aggregated analysis samples from which
the predictor intercorrelations and the validity vectors for each MOS are used
to accomplish test selection and computation of test weights for assignment
variables (AV).

All analysis samples were generated using the parameters of the designated
population. Test selection and the computation of regression weights for
assignment were accomplished using the predictor intercorrelations and validities
of the specified analysis sample.

The model sampling approach assumes that the statistical characteristics
of the population of people to be assigned are known. In the present case, the
parameters of the corrected Project A empirical sample (the designated
population) were assumed to be in standard score form, normally distributed and
to have expected correlation coefficients equal to (R{V')', where R is the 29 by
29 matrix of population predictor intercorrelations and V the 18 by 29 matrix of
population predictor validities. Given this information, it was possible to
generate samples of artificial test scores with variance/covariance expectations
equal to those of the youth population's multivariate normal distribution. These
samples of test scores and predicted performance scores were then treated as
random samples from the designated population.




Table 2
Operational Job Families & Project A Military Occupational Specialties (MOS)

Operational Job Families Project A MOS Codes and Names (n=sample
size)
Clerical/Administrative (CL) 71L Administrative Specialist (n=427)

76W Petroleum Supply Specialist (n=339)
76Y Unit Supply Specialist (n=444)

Combat (CO) 11B Infantryman (n=491)
12B Combat Engineer (n=544)
19E M49-M60 Armor Crewmember (n=394)

Electronics Repair (EL) 27E TOW/DRAGON Repairer (n=123)

Field Artillery (FA) 13B Cannon Crewmember (n=464)

General Maintenance (GM) 55B Ammunition Specialist (n=203)

Mechanical Maintenance (MM) 63B Light Wheel Vehicle Mechanic
(n=478)

67N Utility Helicopter Repairer (n=238)

Operators/Food (OF) 16S Man Portable Air Defense System
Crewmember (n=338)

64C Motor Transport Operator (n=507)
94B Food Service Specialist (n=368)

Surveillance/Communication (SC) | 31C Single Channel Radio Operator
(n=289)

Skilled Technical (ST) 54E Nuclear, Biological & Chemical
Specialist (n=340)

91A Medical Specialist (n=392)

95B Military Police (n=597)
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Optimal assignment to a job family of all "individuals" in each of the 30
cross samples completed the simulation of selection and classification. The
entities (artificial individuals), defined as vectors of synthetic test scores,
provided 30 samples of entities independent of the analysis sample entities; each
such sample is a replication in a repeated measures design. The evaluation (MPP)
standard scores were computed at the conclusion of each simulation. MPP values
were produced by first applying full least squares weights from the population
parameters to the 29 cross sample test scores possessed by each *individual®.
The particular vector of population weights applied to each individual's scores
depended upon which MOS the "individual" was assigned to during the optimal
assignment simulation. The use of population parameters to compute MPP scores
for the evaluation process maintained a distinction between the assignment
variable and evaluation least squares weights, the former of which were computed
from the analysis sample. Biases due to correlated error across assignment and
evaluation regression parameters were eliminated by the use of the expanded cross
validation design used in this study. The more traditional cross validation
design would not eliminate this type of bias.

Experimental Design
Experiment 1

Figure 2 summarizes the four facets and corresponding levels of Experiment
1's basic design (Design A) and one additional facet (Design B).

Facet 1 shows the gradual increase in the number of tests in the composite
to form three-test, then five-test and finally nine-test best weighted
composites. Since three- or four-test aptitude area (AA) composites currently
are used by the Army in selection and assignment to jobs, a best weighted three-
test baseline appeared to be appropriate. This experiment assessed whether five-
test or nine-test composites provided increasing statistically and practically
significant gains in MPP over a three-test baseline.

Facet 2 permitted examination of two alternative data sources for the
selection of tests. The 9 test ASVAB was compared to the 29-test Project A test
pool (which includes the 9 ASVAB tests). The comparison was between two
different test pools constructed in different ways and with different test
content, since the cognitive and non-cognitive experimental predictors of Project
A capture different abilities compared to the primarily cognitive ability tests
of ASVAB. For the 9 test pool conditions, the experimental design allowed a
direct analysis of the effectiveness of alternative approaches of forming
composites from the ASVAB as presently used by the Army. Under the 29~test pool
conditions, the results provide insight on the potential benefits of diverse test
content in enabling selection of composites with increased classification
efficiency.

The ASVAB provides a 9-test pool from which the 3 and 5-test composites or
batteries can be selected, just as the 29-test pool provides a source for the
selection of 3, 5, and 9-test composites or batteries. The implied operational
battery is the union of the tests in a set of test composites and represents the
set of tests required to be administered to make use of any set of composites.
It may well be the size of the implied operational battery, rather than the size
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Figure 2
Experiment 1 Design

(1)
(2)

(3)

(4)

(3)

Design A
Number of tests in composites (3, 5, 9)
Data source from which tests are selected (ASVAB, 29 Project A predictors)

Figure of merit for test selection (modified Horst index of differential
efficiency (Hgm), predictive validity (PV))

Type of regression weights in composites

a. least squares using selected tests (i.e. LSE composites)

b. positive least squares weights obtained by setting negative weights
' of LSEs to zero; remaining weights are utilized unchanged

c. positive least sguares weights obtained by selecting only those

tests whose least squares weights are positive

Desiqn B

Selection of tests for batteries or for composites using facet (4)a only

11




of the composites, that has the greater positive correlation with MPP. In this
and related studies we refer to the 29-test pool as a battery only when every
test in the pool is represented in at least one assignment composite.

Facet 3 provides a contrast between two test selection indices: an index
of predictive validity (PV) and a modification of Horst's differential validity
index that we call Hgm. Two alternative PV-based indices are appropriate for use
as the figures of merit in test selection for a battery when the intention is to
select personnel for multiple jobs: Horst's (1955) index of absolute prediction
(H,) and Johnson, et al.'s (1990) Max—-PSE. These indices 1lose their
distinctiveness, however, when used to select, separately, composites for each
job family, as in the present experiment. When modified to accomplish the latter
objective, the two indices converge to become the index referred to here as PV.
With regard to determining the appropriate differential validity index, the point
distance index (PDI) has the same relationship to Horst's index (Hy) as does H,
to Max-PSE (see Johnson and Zeidner, 1991). However, a modification of either of
these differential validity-type indices to provide an index for use in selecting
tests separately for each job family composite produces a more guestionable
index, one that loses much of the intuitive rationale applicable to the situation
where tests are being selected for a single battery. The modification of Hyg used
here to permit its use in the selection of tests separately for each job family,
as noted earlier, is referred to as modified Hy (Hgm)-

Facet 4 makes possible the comparison of three methods of test weighting
to form test composites. The conventional full least squares method, as employed
in previous model sampling experiments, was contrasted to two alternative methods
that hopefully might stabilize the regression weights of cross samples by
ensuring all weights were positive. The three weighting methods employed were:
(a) weights of least squares estimates for sets of all selected tests (least
squares estimates); (b) positive least squares weights for the selected tests
with negatively weighted tests dropped after computation of the LSEs; and (¢)
positive least squares weights obtained by imposing a constraint during test
selection. This constraint required that the candidate test be rejected if it had
a negative weight or caused already selected tests to accrue negative weights.

Facet 5, referred to as Design B, provides a basis of comparison between
the results of Johnson, et al.'s (1990) original research and the present study.
Although Hy was shown in the original study to be superior to PV for the
selection of tests for batteries, its superiority for composites cannot be
assumed. In addition, this design enabled a comparison between the performance
of the best selected composites and the best selected test battery as alternative
methods for creating classification efficient assignment variables. The number
of tests required in an operational battery is considerably larger when tests are
directly selected for each test composite.

Experiment 2

Figure 3 summarizes the four facets and corresponding levels of Experiment
2. Facet 1 of Experiment 2 corresponds to the size of the analysis sample.
Three different analyses samples for carrying out test selection and calculating
regression weights for assignment variables were created using three different
analysis sample sizes for each job family. A relatively small sample size of
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Figure 3
Experiment 2 Design

(1)
(2)
(3)

(4)

Analysis sample size for each job family (400, 900, 1600)
Data source from which tests are selected (ASVAB, 29 Project A predictors)

Number of tests in composites (3, 5, 9)

Type of regression weigﬁts in composites (3 levels)

a. least squares using selected tests (i.e. LSE composites) and
aggregated job family samples

b. least squares using selected tests (i.e. LSE composites) and non-
aggregated job family samples

c. unit weights
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N=400 provided an approximation of the average size of the Project A empirical
MOS samples (see Table 2)--a smaller analysis sample than would be recommended
for either test selection or weight computation with respect to defining
operational AA test composites.

The data source of tests to be selected makes up Facet 2 of Experiment 2.
As in Experiment 1, the ASVAB pool of nine tests was compared to the 29 Project
A predictors as an alternative source of tests to be selected.

Facet 3 of Experiment 2 is the size of the test composite. From each pool
of tests, three, five or nine tests were selected to form job family composites
as in Experiment 1. The nine-test composite formed from the ASVAB was
essentially a full least squares composite, and, in the special case of the unit
weighting conditions, the nine-test composite using ASVAB tests was a "null" cell
and omitted from the experiment. Unlike Experiment 1, only the predictive
validity test selection index (PV) was used to select tests for composites.

Facet 4 represents the method of test weighting. In Experiment 2, three
different weighting schemes from those of Experiment 1 were analyzed: (a) least
squares estimates derived from aggregated job family validity samples of
different size (b) least squares estimates derived from non-aggregated job family
validity samples of different size and (c) unit weights to represent the current
method employed by the Army. The two forms of least squares weighting were used
to examine the hypothesis that non-aggregated job samples provide a more accurate
and hence stable estimate of regression weights for small samples.

Procedures
Generation of analysis samples

The analysis sample used in Experiment 1 was the same as that used in
Johnson, Zeidner, and Leaman (1992). The aggregate analysis sample used to
compute predictor intercorrelations and validities was generated to have the same
number of predictors (n=29) and "individuals" within each of the 18 job samples
(N) as in the concurrent empirical Project A samples (see Table 2). In this
approach an m by n matrix of random normal deviates was transformed using a
Gramian factor solution (F,) of the "universe" intercorrelation matrix (Ry)
calculated from the corrected Project A empirical data. Fy was used to transform
the random normal deviates into test scores for each of the 18 job subsamples.
The correlations among the predictors and with the criterion scores for each job
provide the intercorrelation and validity matrices, R,i and Vuj. The R, matrices
are aggregated across jobs to form Ry and the m separate 1 by n Vgj matrices are
concatenated to form an m by n matrix, V,. The analysis sample parameters are
provided by the m and n by n super matrix, [Rz | Va']'. This analysis sample
matrix is the data source for both test selection and the computing of weights
for assignment variables.

In Experiment 2, analysis (back) samples of different sizes were formed.

Facet 4 of Experiment 2 demanded not only an analysis sample for the aggregated
nine job families but also the creation of non-aggregated analysis samples for
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and Hgm required that all rows of the validity matrix, representing all 9 job
families, be considered in its computation for each trial test. The PV figure
of merit, on the other hand, maximizes the contribution of a trial test to the
multiple correlation of previously selected tests and the trial test with respect
to the criterion of a specific, separately considered, job criterion. For the
separate computation of PV within a given job family, therefore, only the row of
the validity matrix representing the appropriate job family was used in the
calculation. The formulae for each figure of merit below illustrate this

distinction.

k .
Hotmy = 33 5 (@15-a5)

where, i = the row representing job family m (m=1,...,9);
3 = the column representing the trial test;
k = the number of previously selected tests plus one trial
test;
ajj = the trial test's orthogonal component in the factor matrix

for the ith family;

a; = (1/n )X (a;;), where n, equals the number of job families.
J m 1 ij m

Pan=§:§(an42

where, i = the row representing job family m (m=1,...,9);
i = the column representing the trial test;
k = the number of previously selected tests plus one trial
test;
ajj = the trialtﬁest's orthogonal component in the factor matrix

for the i'" job family.

A further modification to the test selection procedure was required in
Experiment 1 when the tests with positive weights were empirically determined at
the test selection phase (facet 4, level 3). Additional constraints and
 modifications which would avoid the selection of tests with negative LSE
regression weights were applied in the selection algorithm.

First, each selected test's semi-partial correlation coefficient, given all
previously selected tests, was restricted to a positive value. This coefficient
is represented by the a;jj coefficients described in the above formulae for Hgm
and PV. Thus the jth trial test's orthogonal component for the ith job family
criterion (ajj) was considered prior to the computation of the figure of merit
for test selection, Hgm or PV. Only trial tests with positive ajj coefficients

were retained in the selection process for further consideration.
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Second, each selected test was also constrained such that the regression
weights applied to each of the already selected tests, as well as the candidate
test, were positive, ensuring that the validities of previously selected tests
remained higher than each new test and that the intercorrelation between each
previously selected test and the new test was sufficiently low. Such a
constraint was required to ensure that, as a test was selected, it did not have
the effect of turning any previously selected test into a suppressor variable.
A suppressor effect would result in some or all previously selected tests having
negative regression weights in the eventual combined-variable LSE composite. The
implementation of this constraint required a pairwise comparison using the
candidate test and each previously selected test in turn. If any of the pairwise
comparisons for a candidate test failed to meet this constraint, it was
eliminated from consideration. For the t™ trial test and the pth previously
selected test, the constraint was imposed by:

rty - rpt * rpy >= 0.02

where, ryy = the validity of the tth trial test for the job family
criterion y,
rpt = the correlation coefficient between the t™ trial test and the

pth previously selected test,
= the validity of the pth previously selected test for the job
family criterion y.

Finally, for Experiment 1, a non-squared Hgm index was used to rank
eligible tests at each test selection phase. For those tests which had satisfied
the two constraints, ultimate test selection was based on the largest Hym before
squaring. The use of a non-squared Hgm index was necessary to allow the
distinction between negative and positive values in the final comparison of Hgm.

Each of the above constraints was intended to eliminate the occurrence of
negative weights for LSEs under the empirically-determined positive weighting
conditions of Experiment 1. It was still possible, however, that even after
applying the above constraints, negative weights would occur. Furthermore, the
goal of selecting 3, 5 or 9 tests could be viewed as the maximum number of tests
that could be obtained after constraining eligible tests to positive weights.
Under the increased constraints of the modified test selection algorithm, it was
likely that some of these targets would not be achieved. It was found, for
example, that the Hgm index, while returning the maximum target of 3, 5 or 9
tests from the constrained test selection algorithm, subsequently produced a
small number of negative regression weights. In this situation, any negative
weights were set to zero in the same way as for the other positive weighting
condition of facet three. By contrast, the tests selected by the PV index always
returned positive regression weights. However, under some conditions, the
desired number of positively weighted tests could not be obtained. In such
cases, the test composite was constructed from the reduced, but optimal, set of
tests which did satisfy the constraints of the empirical positive weighting
condition. In effect, a test which would yield a negative regression weight
would instead be given a zero weight.

.
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Generation of cross sample assignment scores

The method for generating the cross samples of test scores and predicted
performance scores followed that of the previous model sampling experiments using
the corrected Project A data as the designated population (see Johnson, Zeidner,
& Scholarios, 1990; Johnson, Zeidner, & Leaman, 1992; Statman, 1992). A
simulation of selection and assignment is accomplished within a cross validation
design and followed by an evaluation process in which population weights are

utilized.

Each of these experiments employed a three-stage procedure for creating
samples of assignment variable (AV) scores for use in the simulation of selection
and assignment operations. First, random normal deviates were generated to
represent the total sample's test scores for each predictor. In the present
experiments, thirty cross samples of N=363 were generated, thus providing thirty
replications of each experiment for the 363 "individuals". Second, the random
normal deviates were transformed into test scores simulating the characteristics
of the population from which the samples were assumed to be drawn. The
transformation was based on a Gramian factor solution of the population predictor
intercorrelations (see Johnson, et al., 1990). Finally, the test scores for
these selected "individuals" were used to create AVs derived as LSEs using
regression weights calculated from the variable set and analysis sample specific
to each of the experimental conditions.

The simulation of the selection process was accomplished using a selection
ratio of .70 to eliminate the lower 30% of all "individuals" ranked by thelir
scores on the Armed Forces Qualifications Test (AFQT). In each cross sample, the
363 "individuals" created in the first three steps were reduced to 252.

“Individuals" within the 30 cross samples corresponding to each of the 30
experimental conditions were optimally assigned to job families on the basis of
their AVs. A network optimization model was used where the objective function
to be maximized was the mean predicted performance (MPP) standard score of
assigned entities (see Scholarios, 1990 for a more complete description). In
each simulation, optimal assignment of 252 entities was accomplished by meeting
equal job family quotas of 28 entities in each job family.

In Experiment 1, a single analysis sample provided the appropriate
correlation data for calculating AV weights in all conditions. In Experiment 2,
the non-aggregated and aggregated job family analysis samples were the source of
data for AV weights for each of the three sizes of analysis samples, providing
six separate analysis samples.

Computing and Using MPP as the Unit of Analysis

The evaluation process calls for the computation of predicted performance
scores for each "individual" with respect to the job family to which each person
was assigned during the simulation of the assignment process. These predicted
performance scores are then averaged across all job families to form an MPP score
for each replication within each experimental condition. Thirty replications
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were accomplished for each condition (cell) in the experimental design
(combination of experimental conditions).

Predicted performance scores for each individual and each job family were
computed by applying population regression weights to the same test scores as
were used in the computation of AVs (using the analysis sample weights). Thus
the benefits of a traditional cross validation design are obtained augmented by
further safeguards against biasing effects of correlated error that would result
from using the same data source to compute weights for AVs and evaluation

composites.

The MPP value on which experimental conditions were evaluated represented
only classification effects. The increase in MPP attributable to initial
operational selection was computed as a function of selection ratio (SR) and the
validity of the selection variable (Naylor and Shine, 1965). As noted above, all
simulations in this experiment used a SR of 0.70. The average AFQT validity for
the Project A concurrent validation data used here was calculated as .531. Using
these parameters yields an expected MPP attributable to selection alone of .2623.
This constant was subtracted from the MPP resulting from all simulations, leaving
an MPP attributable solely to the classification process. All results presented
in this report represent the average MPP for 30 replications.

Results and Further Analysis

Experiment 1
Design A

Tables 3 and 4 show the average MPP across 30 replications from each
experimental condition of Experiment 1. A four-factor repeated measures ANOVA
encompassing the full set of replications in both these tables indicate
significant main effects for the type of test selection index used (Fq 29=639.93),
the composite size (Fy,29=864.78), and the weighting method (Fp 29=277.88) all at
p<.0001. The facet distinguishing the test pool (the ASVAB or the 29 Project A
tests) was not significant at p<.05 (F=3.55). However, statistically significant
(p<.0001) two-way interaction terms for this facet suggested that each
experimental assignment variable was behaving differently under different test
pools. Further hypothesis testing was conducted separately for the ASVAB and the
29-test battery.

One of the most striking results in both test sets was the performance of
Horst's index modified to select job family composites (Hgm) relative to the
index of predictive validity (PV). In contrast to Johnson, et al.'s (1990)
finding for test selection when the objective was constructing test batteries,
PV performed consistently better than Hym for test selection when the objective
was test composites. Over all 29-test pool conditions, PV provided an average
increase of .05 in MPP over Hgm (F1,29=866.5, p<.0001). Overall, selection from
the ASVAB showed less differentiation between the two indices, with the PV index
giving an average increase of .009 in MPP over Hgm over all conditions. Hym,
therefore, appeared to be a less useful test selection method for creating
tailored composites directly from an experimental pool, specifically from the 29-
test battery.
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Table 3
Experiment 1: Design A - Average Mean Predicted Performance across 30 Cross samples

using the ASVAB?

Test pool 9 test ASVAB
Test selection index Hm PV
Number of tests in composite 3 5 9 3 5 9

Test weighting

Full least squares estimates .199 .230 .243 220 .234 .243
(.037) (.032) (.035) | (.037) (.037) (.035)

LSEs with negative weights set | .181  .211 224 | 209 218  .224
to zero (.037) (.036) (.040) | (.038) (.041) (.040)

Positively-weighted LSEs ° .208 219 .230 214 223 .236
(.037) (.035) (.037) | (.039) (.038) (.035)

Notes. 2@ Standard deviations for the 30 cross samples are given in parentheses
b pogitively-weighted LSEs were obtained by selecting tests that would

vield positive least squares weights.
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Table 4
Experiment 1:

Design A - Average Mean Predicted Performance across 30 Cross
samples using the 29-test battery

Test pool 29-test pool

Test selection index Hym PV

Number of tests in composite 3 5 9 3 5 9

Test weighting

Full least squares estimates 173 210 .263 221 247 285
(.041) (.038) (.036) | (.040) (.042) (.039)

LSEs with negative weights set to | .139 171 212 218 .223 242

Zero (.046) (.041) (.039) | (.041) (.041) (.041)

Positively-weighted LSEs ° 176 191 204 217 238 .266
(.039) (.038) (.033) | (.041) (.040) (.037)

Notes.
parentheses

@ gstandard deviations

for the 30

Cross

samples

are given in

b positively-weighted LSEs were obtained by selecting tests that

would yield positive least squares weights.
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The contrast between the ASVAB and the expanded 29-test pool also provided

some unexpected results: - -Under-the Hgm selection method, the ASVAB MPP values
were consistently higher (on average, .02 in MPP) than those of the 29-test pool
(F1,29=117.55, p<.0001). This was not the case under the PV method which
conformed with the expectation that the larger test pool, which subsumes the
smaller pool (battery), would provide greater MPP (on average, .02 in MPP
F1'29=4l.47, p<.0001).

The remaining comparisons of Design A produced expected results. The 9-
test composite resulted in a greater gain in MPP than the 5-test composite (.01
for the ASVAB, Fq 29=195.15, p<.0001; .03 for the 29-test pool, F1,29=248.56,
p<.0001) which in turn was greater than for the 3-test composites (.02 for the
ASVAB, Fy 29=88.51, p<.0001; .02 for the 29-tests, Fq,29=501.53, p<.0001). These
results for composites are consistent with earlier findings that the larger the
test battery the greater is the gain in classification efficiency (CE) (Johnson,
et al., 1990). Increases in CE were not asymptotic, over the range evaluated.

The comparison across all weighting conditions supported the expectation
that least squares weighting of all tests in the composite is optimal, providing
an average increase of .02 in MPP over the positive weights obtained at the test
selection phase (F129=138.81, p<.0001) and a .03 increase over the negative
weights set to zero (F139=556.36, p<.0001). Although these differences were
statistically significant for both levels of test pools from which tests are
selected, they were larger in the 29-test pool conditions. These results show
that the Lleast squares weighting provides the best assignment variables,
regardless of the number of tests in the composite, the method of test selection,
or the test pool from which composites are selected.

A major objective of this study was to determine whether findings relating
to the selection of tests for batteries can be duplicated with respect to test
composites used as assignment variables. We had hoped to find a modification of
Hyq that could be used to directly select tests for inclusion in an assignment
variable that would provide the same positive effect of using DV for the
selection of tests for composites and show the same sensitivity to the increase
of the number of tests included in the composites as is found in the selection
of tests for batteries.

However, the strong evidence that DV is superior to PV for the selection
of tests for inclusion in batteries, from which test composites to be used as
assignment variables will be drawn, clearly does not extend to test composites
used as assignment variables--when Hgm is utilized as the measure of DV.

The research providing findings in support of the use of DV in selecting
tests for batteries all maximize PV in the creation of the test composites used
as assignment variables (AVs). Maximizing PVs in AVs in earlier studies provided
maximal classification efficiency obtainable from a given battery. Thus, the
findings in this study showing the superiority of PV over Hgym for selecting AV
tests are not contradictory to the earlier findings with respect to batteries.
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Design B

Design A reflects our original intention that Experiment 1 compare the
effects of alternative indices (DV vs. PV) used to select tests for assignment
composites. Thus, tests were selected from only the 29-test pool. The ASVAB
tests by themselves were not also considered as a source. However, it was

discovered that when the sample size of the Project A concurrent study was
utilized, the MPP obtainable from the 9-test pool rivaled that obtained from the
29-test pool. Also, it was discovered that when selecting the test content for
job family composites, PV was soO superior to Hy that only PV needed further
consideration unless we found a convincing way to improve Hgm. The first of
these findings caused us to include the 9-test ASVAB pool of tests in all
continuing research conducted in this study. The second of these two findings
changed our continuing research on Hgm to one of understanding why the DV index
was inferior to the PV index under the conditions of design A.

Our discussion of design B results requires us to clarify four important
selection-classification system characteristics: (1) test pools from which tests
are selected for either batteries or composites; (2) test batteries which under
operational conditions must be administered to all recruits; (3) test composites
used to classify and assign recruits; and, (4) implied batteries which contain
all the tests found in a set of composites. The battery and the implied battery
do not differ from an operational point of view. When tests are selected to form
a battery in which every composite includes every test in the battery, we refer
to this set of tests as simply a battery. However, when tests are directly
selected from a pool to form composites, we refer to the total set of selected
tests, across all composites, as the "implied battery."” The implied battery
becomes an operational battery if a set of these directly selected composites
becomes operational.

We have not previously felt it necessary to distinguish the impact between
size of batteries and size of composites, since we were studying potential
classification efficiency where all assignment variables were equal to full least
square composites. With this stipulation, our composites and our batteries were
the same thing. We, and other colleagues (Statman, 1993; Scholarios et al.,
1994; Johnson et al., 1992) have repeatedly shown that the number of predictors
contributing to the assignment variables has considerable impact on CE, but we
did not try to distinguish between the effect of composite size as compared to
battery size. The results of design B permit us to say that increasing battery
size (or implied battery size), along with using best weighted composites and
increasing the number of job families, constitutes one of the three best ways to
increase the efficiency of the Army's classification system.

We began this study with the expectation that we could extend our previous
findings regarding the importance of a battery-composite size variable, it now
appears that battery or, implied battery, size has more importance in the design
of operational systems (and on DAT) than does composite size. While this study
was not designed to precisely contrast the contribution to CE of an increase in
size of pools, batteries, and composites, it is clear that battery size
considerably over shadows these other two system characteristics in its impact
on classification efficiency.
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The most important distinction in reporting results of design B, as shown
in Table 5, is between the indices used to directly select a test battery and the
indices used to directly select test batteries from a experimental pool of tests.
The latter approach results, indirectly, in a selection of an implied battery.
Hqy and Max-PSE found in Table 5 and both PDI and H, also used in previous DAT
based research can be used to select a battery but cannot be used to directly
select composites. The direct selection of composites using a differential
validity concept reguires the use of a major modification of Hy, such as Hgm.

Table 5 provides a comparison of two alternative strategies for developing
an operational system: (1) selection of batteries followed by the use of all
tests in the battery in each AV; and (2) the direct selection of AVs resulting

in an operational battery. The first strategy is indicated by the use of indices
H4q or Max-PSE, and the second strategy by the use of PV or Hgm.

These comparisons were accomplished using both the ASVAB and 29-test pool
for the selection of three-, five- and nine-test composites, using PV and Hym,
and for the selection of batteries containing 3, 5, and 9 tests. The greater
size of the operational battery implied by the direct selection of a set of AV
composites, as compared to the direct selection of a single battery to be used
to make the same assignments, provides a similar advantage in expected MPP to the
indices used to select composites. Table 5 results do not support the premise
that the 29-test pool is demonstrably superior to the 9-test pool (ASVAB) when
equal sized operational batteries are being compared. Its contents indicate some
consistency with the results of Design A. There was also an increase in MPP from
the three-test to the five-test composite (F1,29=1115.17 and Fq,29=520.82, p<.0001
for the ASVAB and 29-test pool respectively) and from the five-test composite to
the nine-test composite (FL29=127.66 and FL29=879.13, p<.0001 for the ASVAB and
29-test pool respectively).

Most important for interpreting the results of Design A, Hy performs on
average .03 in MPP better than the predictive validity index (Max-PSE) when tests
are selected for batteries in which all test composites are LSEs containing all
tests in the battery (i.e., FLS composites). This is the case both for selection
from the ASVAB (F1@9=133.51, p<.0001) and from the 29-test pool (F139=55.33,
p<.0001) and is consistent with the findings of Johnson, et al. (1990) relating
to the selection of tests for batteries. Our DV index, Hgm, does not exhibit
this superiority over PV. When tests are directly selected for composites to
form implied batteries, increasing battery size for a given composite size, the
larger battery, as before, provides the more MPP. However, a potential conflict
between two proposed DAT principles was considered in this study. These two
principles are as follows: (1) tests for composites to be used as AVs should be
selected and weighted to maximize PV; and, (2) tests for forming batteries should
be selected using a DV index. This conflict, when the DV index is represented
by Hgm, is in Experiment 1 resolved in favor of the first of these two DAT
principles.

Table 5 findings permit the comparison of benefits provided by selecting
batteries vs. composites using a PV index for both strategies. This comparison
can be made for same sized composites, but a larger battery is thus implied for
the strategy involving direct selection of composites, assuring a larger MPP for
the index used to select composites. The gain in MPP resulting from directly
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Table 5
Experiment 1: Design B - Average Mean Predicted Performance across 30 Cross

samples comparing Test Selection for Batteries and Composites®

Test pool ASVAB 29-test pool
Number of tests in composite 3 5 9 3 5 9
Test selection index
Hym - composite (Design A) 199 .230-  .243 173 210 .263
(.040) (.032) (.035) | (.041) (.038) (.036)
PV - composite (Design A) .220 234 .243 221 247 285
(.037) (.039) (.035) | (.040) (.042) (.039)
H, - battery ® .188 .229 242 170 .209 .239
(.040) (.036) (.035) | (.038) (.041) (.041)
Max-PSE - battery ° A33 0 206 242 150 0 173 224

(.044) (.035) (.035) | (.039) (.042) (.040)

Notes. All conditions are full least squares estimates
@2 standard deviations for the 30 cross samples are given in

parentheses
b Hy represents Horst's (1954) original index of differential

efficiency.
¢ Max-PSE (maximizing Potential Selection Efficiency) maximizes the
average validity of the composite.
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selecting tests for composites from the ASVAB, using a PV index for both
strategies, is .087 for 3-test composites and .028 for S5-test composites. This
gain is much less when DV indices are used, as when Hygm is compared to Hy, .011
and .001. Thus, considering only the ASVAB, despite the confounding of the
effects of using Hq vs. Hgm with the effects of implied battery size, it is clear
that something else than battery size is at work here. Hgm is not an effective
index.

The gain in MPP resulting from directly selecting tests for composites from
the 29-test pool, using a PV index for both strategies, is .071 for 3-test
composites, .074 for 5-test composites, and .061 for 9-test composites. Again,
this gain is much less when DV indices are used, yielding differences of .003,
.001 and .024 for 3-, 5- and 9-test composites.

Further analysis was undertaken to explore the unexpected results of Design
B. First, the loss in effectiveness in Hgm relative to Hy could be explained by
its lack of theoretical precision as a measure of differential efficiency for
creating composites as contrasted to batteries. Horst's (1954) definition of the
DV index assumed the presence of the same tests in all composites forming the
least squares estimates composite and a predetermined operational battery size.
Hence the effectiveness of Hym as a test selection index for forming composites
may—depeﬂé~99~igc£easiug‘Lhe\gxg:lap in tests selected for different families

while retaining differential test weights across families.

Further examination of the regression weights produced by the Hgm
conditions in this experiment revealed that, particularly in the 29-test pool
conditions, the test selected first often had near zero weights for the family

for which they were selected, by the time all k tests were selected, and thus
made little differential contribution. In some cases, there were no differential
weights at all to produce the required relative effect on different job families
(i.e., there was little overlap of tests selected and the regression weights for
earlier selected tests, those yielding the highest Hym, were close to zero, the
implied weight given to non-selected tests; hence weights were not differential
across job families).

An extensive literature exists on the merits of building test batteries or
composites using a sequential selection of tests with the objective of maximizing
selection efficiency in terms of a single criterion variable. The sequential
process proceeds one test at a time--either starting from zero (accretion) or
from the total experimental test pool (deletion). The literature regarding the
selection of tests to maximize a figure of merit based on multiple jobs, each
with its own criterion variable is more sparse. Horst published three articles
on this specific topic. One article relates to maximizing differential validity
by accretion (Horst, 1954) and a second article relates to maximizing absolute
validity by accretion (Horst, 1955). A third article relates to maximizing both
differential and absolute validity by deletion (Horst and MacEwan, 1960). This
literature is discussed in greater detail in Johnson and Zeidner (1991).

In this study the investigators were initially committed to use of the
sequential accretion method to select tests for either composites or batteries.
In the accretion method the "best" test is selected, then additional "best™
tests, one at a time, while always retaining previously selected tests. However,
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the deletion method was also used in Experiment 2 in conjunction with a
preliminary application of the accretion method. The deletion method commences
with a test composite containing all the tests in the pool, or as in this study,
with all the tests selected by another method. Each deletion-test selection step
results in the removal of one test from the existing pool, with the reduced pool
eventually becoming the "best" composite.

The literature, in which the tests selected by accretion and deletion
methods from the same test pool are compared, indicates that these two approaches
often result in the selection of surprisingly different sets of tests (where test
pools are at least moderately large) while providing essentially equal validities
(Burket, 1964). Thus, for a given test pool, the union of the "best" 3 tests
selected by accretion and the "best" 3 tests selected by deletion provide a set
of n tests (n ranging from 3 to 6 depending on the overlap) that would be
expected to be better than the "best"™ n tests selected entirely by either
accretion or deletion.

Using an extension of the above logic, a combined use of the accretion and
deletion methods should yield higher MPP than sets of AVs (assignment variables)
selected by only one of the two methods, regardless of whether the figure of
merit is a PV or DV index. In this study, the combination of accretion and
deletion concepts in the same algorithm was investigated only in conjunction with
a DV test selection index (i.e., Hgm).

It appears that the modification made to Horst's DV index to permit the
forming of composites was, for a number of reasons, an inadequate index for
maximizing classification efficiency resulting from the direct selection from a
test pool of a set of equal sized test composites. Various hypotheses were
developed to explain why a DV index (Hgm) did not maintain its superiority over
the PV index with respect to the MPP resulting from a classification process,
when separate test selections for each job family were made. These hypotheses
provided the rationale for devising further modifications of Hym in the hope of
increasing the classification efficiency resulting from use of this index to
select tests for composites. The authors feel that such modifications were worth
considering because the earlier finding, as already noted, showed the
considerable superiority of Hyq over PV for selecting tests for battery rather
than for composites (Scholarios, et al., in press).

Hypothesis 1: An increase in test overlap across job families increases the
differential effect of each test in the final set of best weighted test
composites and results in greater MPP. An increase in test overlap was
accomplished by a two-stage version of Hgm where a second test selection was
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performed against the pool of tests that had been selected in the first stage and
had been present in at least two of the nine job families.'

The differential validity test selection indices, including Hy4, PDI, and
Hqm are derived using a sequentially constructed triangular factor analysis
solution of the predictor intercorrelation matrix extended to the predicted
performance variables. For Hy, the selected candidate test is the one which
provides the highest average squared differences of the job family factor
coefficient (the one for which selection is being accomplished) from the mean of
the 9 loadings of the job family predicted performance variables on the same
factor. Hgm differs from Hy in that only one squared difference, instead of the

averageacross—the jobfamilies, is considered _in selecting the "best" test.

Before the squaring occurs in the computation of Hgm, this difference can have
either a positive or negative sign.

Hypothesis 2: Constraining the Hgm test selection process to the
consideration of positive signed differences (as defined above) will provide a
set of tests that will provide more potential classification efficiency than will
the unconstrained Hgm index. It is believed that the use of this constraint will
reduce the number of small, almost zero, regression weights for the first or
second tests selected. If this reduction occurs, the LSEs in which the
independent variables are selected using the constrained Hgm should provide
higher MPPs.

Hypothesis 3: A two-Step test selection process which selects n + 2 tests
by accretion then selects two tests for deletion (to select the best n tests
where n equals either 5 or 7) will increase the stability of regression weights
resulting in greater MPP.

Table 6 compares the MPP scores obtained from assignment of entities using
composites selected by the original Design A Hym (one-stage test selection) with
two-stage, constrained and "deletion" versions of Hym. Indices 1 and 2 represent
the unmodified Hym index from one stage test selection (see also Table 4) and the
unmodified Hgm index with two-stage test selection. Indices 3 and 4 apply the
constraint, and indices 5 and 6 apply the deletion process to the original
indices 1 and 2. For all sizes of composites and for both one-stage and two-
stage selection, the constraint resulted in an average decrease of .025 in MPP.
on application of the deletion process, however, there was an overall average
increase of .02 in MPP from the original Hgym indices. The greatest MPP values
were obtained from the two-stage Hym with deletion (index 6 in Table 6), and, as
before, from the 9-test composites.

1 Two-stage test selection was not performed for PV test selection as it would provide no added value to the
classification efficiency of resulting composites. When the column variance of the trial tests are evaluated using tests
which have already been selected for assigning to other jobs (i.e., for classification), Hym becomes a more effective
figure of merit for selecting tests to be used in a particular job composite. Thus, the presence of tests which are
unselected for other job families would detract from the effectiveness of Hym. With the PV figure of merit,
unselected tests have no effect when selection is for one specified job family, since only the tests already selected
for a particular job have any effect on the trial test’s evaluation.
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Table 6
Experiment 1: Design B - Average Mean Predicted Performance across 30 Cross
samples - Modifications to Hgm °
Test Pool 29-test pool
Number of Tests in Composite 3 S 9
Hym Index
1. Hyn - one stage (Design A) 173 210 263
(.041) (.038) (.036)
2. Hym - two stage (Design B) 178 .220 .266
(.035) (.032) (.039)
3. Hyn - one stage/constrained 132 .201 255
(.040) (.040) (.037)
4. Hym - two stage/constrained ° .144 .184 258
(.044) (.037) (.038) "
5. Hyn - one stage/with deletion * .208 232 280
(.038) (.039) (.033) |
6. Hyn - two stage/with deletion ¢ 213 .244 281
(.036) (.036) (.036)

Notes

a

Standard deviations for the 30 cross samples are given in
parentheses

All conditions are least squares estimates

The first 2 tests in the 3-test composites were constrained to have
a positive difference between the factor coefficient loading of the
job family and the mean of the loadings of all job families on this
same factor (see hypothesis 2).

The “"deletion" process was initiated from the "best" 5, 6, and 11
tests for the 3-test, 5-test and 9-test composites, respectively.
For each condition, the tests with the lowest weight were dropped
from the implied battery from which the final composites were
created. At each deletion stage, the composite weights were
recalculated.
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Referring again to Table 4, the greatest classification efficiency in
Design A was provided by the LSE assignment composite selected by PV from the 29-
test pool (.221 in MPP for the 3-test composite, .247 for the 5-test composite,
and .285 for the 9-test composite). No other condition evaluated in this
experiment produced higher MPP values. only by increasing the test overlap
across job families during test selection and by deleting low and unstable
weights from the composites (as in index 6, Table 6), was the classification
efficiency from Hgm test selection increased to come within .004 in MPP of the
PV 9-test composite.

A second unexpected result from Design B was that the selection of the best
9-test battery from the 29-test pool was inferior to the a priori ASVAB battery.
This was the case using both Hyg (.239) and Max-PSE (.224) as the test selection
indices in the comparison with the ASVAB (.242). Some explanation for this
finding was required since the a priori ASVAB is subsumed within the 29-test pool
and therefore, in a back sample, cannot provide greater MPP than the "best" 9-
tests selected from the same test pool. A further hypothesis examined whether
the apparent superiority of the ASVAB in the present experiment's cross samples
was influenced by the sampling error introduced by conducting test selection and
computing assignment regression weights on the analysis sample.

Hypothesis 4: Controlling for sampling error in test selection and/or the
calculation of regression weights for assignment will increase the MPP provided
by the best 9-test battery selected from the 29-test pool sufficiently to provide
superiority over the ASVAB.

Further simulations were conducted to permit the comparison of the ASVAB
operational battery and the best 9-test battery selected from the 29-test pool
using Hyq (as in Johnson, et al., 1990). The 29-test pool conditions could be
freed of sampling error in either or both the test selection process and/or the
computation of assignment weights by using the population, rather than analysis
sample, predictor intercorrelations and validities in the analysis process. The
ASVAB condition, using an a priori battery, is always free of the effects of test
selection sampling errors and can be free of sampling error in the regression
weights by using the population parameters to compute regression weights. Table
7 shows the average MPP standard scores for six conditions. Two of these cells
represent the MPPs obtained from Design B (Table 5) where no sampling error
effects were present (i.e., test selection and computation of regression weights
were based on the analysis sample: MPP equals .239 for the best 9-test battery
and .242 for the ASVAB. The primary result of interest was the effect of
shrinkage in MPP, measured in the cross samples, attributable to capitalizing on
test selection and regression sampling error in the back sample and the effect
of this when comparing the a priori ASVAB to the best 9-test full least squares
composites.

The superiority of the ASVAB over the best Hy-selected 9-test battery shown
in Design B disappeared when test selection error in Hy selection alone was
absent, resulting in a .03 MPP gain over the ASVAB. When regression, but not
test selection, error alone was absent, in both conditions the best 9-test
battery gave a .0l gain in MPP over that provided by the ASVAB. The absence of
both sources of sampling error produced a gain of .03 in MPP from the use of the
best Hyq derived 9-test battery over the a priori ASVAB.
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Table 7

Experiment 1: Average Mean Predicted Performance across 30 Cross samples
reflecting Mean Shrinkage due to Sampling Error in Regression Weights and Test

Selection®
Best 9-test battery for 9 job ASVAB battery
families selected using H,

Test selection Test selection No test

error present *  error removed ¢ selection
Regression error .239 275 .243
present ° (.042) (.042) (.035)
Regression error 291 .308 .281
removed ° (.039) (.035) (.036)

Notes. All conditions are full least squares estimates.

a

Standard deviations for the 30 cross-samples are given in
parentheses.

Implies use of analysis sample for test selection or assignment
regression weights.

Implies use of population for test selection or assignment
regression weights.
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The above analysis showed the superiority of the ASVAB in the presence of
sampling error. This finding resulted from the use of comparatively small
analysis samples. This finding, however, was not obtained when a very large
analysis sample was utilized. The effects of sampling error, introduced by test
selection and by the computation of regression weights using the Experiment 1
analysis was sufficient to affect the outcome of experimental comparisons. This
finding has implications for the sample size of back samples used as the source
of tests via test selection and regression weights for use in cross validation
samples. The design of Experiment 2 permits further analysis of the effect of
analysis sample size. The sample sizes chosen in this study were also utilized
in previous research studies and thought to be minimum sizes required to make
operaticnal decisions.

Experiment 2

Table 8 shows the classification effects of the Experiment 2 simulations
for the three different sizes of analysis sample. The comparison between
analysis samples formed a between-group factor while all other experimental
conditions were repeated measures for 30 different simulated applicant groups.

Comparing across the samples in Table 8, statistically significant
classification gains were evident with an increase from N=400 to N=900 and from
N=900 to N=1600. The greatest gains from N=400 to N=900 (up to .04 standard
scores) were observed for the best three-, five- and nine-test aggregated full
least squares (FLS) composites selected from the 29 tests (Fq,58=15.00, p<.0001).
Gains and reversals for the same composites from the non-aggregated LSE weights
were not significant at p<.01l. For composites selected from the ASVAB,
differences resulting from increasing N from 400 to 900 were not significant at
p<.01 either for the aggregated LSE job family composites (F158=4.34) or for the
non-aggregated FLS composites (F1§8=.0001). The unit weight conditions from
N=400 to 900 provided mixed results with no significant gains but one significant
reduction for the nine-test composite from the 29-test pools (Fq58=10.30,
p<.001).

Increasing the sample size from 900 to 1600 provided one significant gain
in MPP among FLS composites (F158=6.66, p<.001 for the five-test aggregate ASVAB
composite) and significant gains for all unit weighted composites (F, 232=12.21,
p<.0001 across all samples).

The sample size effect was particularly prominent when comparing the
conditions within the separated repeated measure designs within each sample size.
Some relationships which were inconsistent at the smaller sample size became more
pronounced at both the larger sample sizes. For example, the increase in MPP
from a three-test to a five-test aggregate LSEs composite became greater in terms
of absolute MPP, and consistently significant statistically at p<.0001, with the
increasing sample size .007 in MPP (tq 29=3.78) to .01 (tq,29=3.53) to .04
(t1,29=11.45)). Similarly, the effect of adding tests to the unit weighted
composites derived from the 29-test pool was inconsistent at N=400 with a gain
from three to five tests (tq,9=5.25, p<.0001) but a decrease from five to nine
(tq,29=7.60, p<.0001). At N=900, this progress showed a decline from three to
five tests, albeit not significant (tq,629=2.236) and significant from five to nine
tests (tq,29=13.77, p<.0001). At N=1600, the decline in MPP was significant for
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Table 8
Experiment 2: Average Mean Predicted Performance for Different Analysis Sample

Sizes

PV test selection from PV test selection from
T ASVAB — — —— — —P

3tests Stests 9 tests | 3 tests 5 tests 9 tests

Analysis sample N=400
Aggregate job family test 2304 2378 2288 | .2059 2468 2957

weights (.038)" (.038)  (.038) | (.039) (.041) (.039)
Non-aggregate job family .2059 .2485 2360 | .2367 2884 3423
test weights (.037)  (.041)  (.037) | (.036) (.037) (.037)
Unit test weights 1477 .1291 - .1687 .1840 1597

(.041) (.041) (.042) (.038) (.043)

Analysis sample N=900

Aggregate job family test .2069 2163 2176 | 2511 2791 3278
weights

Non-aggregate job family 2111 2382 .2347 .2359 2906 .3407
test weights

Unit test weights .1388 .1263 - 1719 1662 11265

Analysis sample N=1600
Aggregate job family test .2038 .2396 2344 2275 .2854  .3361

weights

Non-aggregate job family 2088 2431 .2343 2391 2854 .3471
test weights

Unit test weights .1699 .1536 - 2195 2041 .1681

Note. @ Parenthetic entries are standard deviations for the 30 cross-samples
used for all assignment simulations for N=400.
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both three to five tests (tq,9=7.60, p<.0001) and for five to nine tests
(tq,29=5.37). It therefore appears that some relationships were evident at all
sample sizes. In general, as sample size was increased, greater consistency
across samples, as well as classification gain, was introduced. It is clear that
it is advantageous to have 3-test, rather than 5-test, composites when only unit
weights are used.

Gains in MPP from the addition of two more tests to the three-test
composites occurred only in the full least squares weighting conditions of each
sample (F1£7=1828.19, p<.0001) and this gain increased as the sample size
increased (Fp,g7=21.12, p<.0001). The largest.gains (.06 in MPP) were observed
consistently for the 29-test pool aggregate conditions (FL87=736.96, p<.0001) and
29-test pool non-aggregate conditions (FL87=1416-02) across all samples. Further
improvements in MPP from five-test to nine-test composites also occurred only
with the LSEs conditions from the 29-test pool, where there was an average gain
of .05 in MPP (Fq,g7=2843.4, p<.0001) with no differences across samples
(F2,87=4.18). As in Experiment 1, there was no apparent asymptote at nine tests
in any sample. Earlier studies have demonstrated the potential for further gains
by adding more tests to the FLS composite obtained from the 29-test pool. By
contrast, all five- and nine-test composites selected from the ASVAB showed no
significant differences at p<.0l.

In direct contrast to the least sqguares estimates, the addition of tests
to the unit weighted composites, whether from the ASVAB or the 29-test set,
resulted in a decrease in classification efficiency. This was the case for all
ASVAB five-test unit-weighted composites relative to three-test composites across
all samples (Fq g7=45.02, p<.0001) and all best selected nine-test composites
relative to the best five-test composites from the 29-test battery (Fj g7=353.06,
p<.0001). In both cases, the comparison between the best three-test and five-test
composites selected from the 29-test battery produced an increase in the smallest

‘sample- size (Fq 9=27.56)but—=a decrease in the largest sample (Fq 20=21.07,

p<.0001). The reduction from five-test to nine-test composites stayed consistent
across samples (FL87=353-1O: p<.0001) although the reduction became greater as
the sample size increased (F2ﬁ7=6.62, p<.0l).

One explanation for the distinctly different results of increasing the
number of tests when different weighting approaches are used is provided by
careful consideration of Brogden's MPP, that is equal to f(m) R V(l—r)”z, where
R is the mean predictive validity of the tailored (weighted) composites, r is the
mean intercorrelation among the tailored predicted performance composites, and
f(m) represents an order function according to the number of jobs, m. Brogden
(1959) showed that while there is an increase in R, and hence MPP, as more tests
are added to the composite, this value quickly reaches an asymptote. On the other
hand, as r continues to increase the value of MPP is reduced. Brogden showed
that a large intercorrelation among predicted performance estimates need not
imply a trivial classification efficiency if the composites are FLS estimates.
However, the magnitude of r continues to effect classification efficiency. 1In
the largest analysis sample of the present experiment (N=1600), r increased in
the unit weighted conditions with the increase of tests from three to five using
the ASVAB (from .33 to .34) and going from three to nine tests, using the 29-test
pool (from .25 to .28). The average validity stayed the same in the case of the
ASVAB and increased by .01 from .53 to .54 for the 29 tests. Thus, the unit
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weights in particular may be inadequate, in comparison to the FLS estimates, for
counteracting the effects of larger assignment variable intercorrelations as the
size of the composite is increased.

The unit weighted conditions, overall, provided significantly less MPP than
both sets of least squares regression weight conditions. Across all sample
sizes, a loss from the use of unit weighted composites rather than LSEs resulted
both for ASVAB test selection (Fq,gr=3678.99, p<.0001) and for selection from the
29~-test pool (FL87=6512.56, p<.0001). The ASVAB unit weights could be improved
with the introduction of test selection for three- and five-test-composites from
the larger 29-test pool with gains of up to .07 standard scores (FL87=658.95,
p<.0001). However, the use of LSEs rather than unit weighted composites exceeded
this gain in all cases, and in some, more than doubled the MPPs obtained from
unit weighted composites.

Differences between LSEs computed from aggregated and non-aggregated job
family analysis samples were found in the smaller sample (N=400) (FL29=216.44,
p<.0001) but disappeared in the largest sample (N=1600). For the smaller sample,
the non-aggregation of job family samples for the computation of weights resulted
in higher estimates of MPP (up to .05 standard scores). Only the 3-test ASVAB
composite reversed this finding when N=400 (FL29=76.91, p<.0001) as well as the
3-test composite from the 29-test pool when N=900 (F139=24.11, p<.0001). The
convergence of these two methods is explained by the increase in MPP from the
aggregate conditions as the analysis sample size increased. With small sample
sizes, non-aggregated job family covariances provide the most stable estimate of
the regression parameters; at larger sample sizes, there should be no differences
petween the two methods. However, data from aggregated samples may be preferred
as a better estimate of the population intercorrelations, and would provide,
therefore, greater accuracy for experiments in which knowledge of the population
parameters is assumed. Also, such differential validity indices as Hyq can only
be obtained from aggregated samples.

Finally, the selection of tests for composites from an expanded pool of
tests compared to the nine ASVAB resulted in consistently higher MPPs across all
samples for LSE composites (Fq,119=829.11, p<.0001). In the smallest sample, only
the three-test aggregate LSE ASVAB composite resulted in a decrease from the use
of 29 tests (F129=81.33, p<.0001). The aggregate and non-aggregate least squares
weighting conditions benefitted equally from the expanded operational battery.
However, the nine test composite in particular showed the maximum gain from use
of the expanded pool. 1In the case of the FLS composites, increases of between
.07 in MPP in the small sample and .11 in the largest sample were obtained by
using the best nine-test full least squares composites, optimally selected from
the 29 tests, rather than the nine tests of the ASVAB (Fq,§7=3407.02, p<.0001}).
The difference among sample sizes was also significant (F2,87=16.63, p<.0001)
indicating a significant increase in the margin of improvement with larger sample
sizes. Thus, the improvement over the nine-test ASVAB composite achieved by test
selection from the 29-test pool was by far the largest classification gain
obtained in this experiment.
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Discussion

The two experiments reported here provide evidence that optimal
classification provides up to twice as much gain in mean predicted performance
as from selection alone. The findings hold direct relevance for both theoretical
and practical issues concerning test selection and weight stabilization for
assignment composites. In addition, the research provides clarification of the
effects of sampling error from test selection and the computation of weights on
back samples, and of the effect of back sample size on classification efficiency.

Many of the key findings can be summarized in terms of the contrasting
predictions of DAT and the intersection of g theory and validity generalization.
Figure 4 provides a comparison of these two positions with regard to the design
of assignment variables. The first two points of comparison relate to the
appropriate method for selecting predictors, either for a single operational
battery or separately for job family composites. Selection methods focus only

on gains in preditfive*vaiidity4as—a—ﬁeasafe—e%4%he4be9e£it4cﬁ434L35L4:g4@344444444444
assignment composite. Evidence from previous studies has shown that a measure
of differential validity, such as Horst's (1954) index of differential efficiency
(Hy), provides greater MPP when predictors are selected for inclusion in an
operational classification battery. Experiment 1 showed, however, that when

‘AgfpredictorsA—afeA—se%ee%ed~4se9aLatelyggﬁggggggbggfamilv assignment composites,
predictive validity is superior Hgm modified to select separately for job
families (see Table 5). Further analysis in Experiment 1 suggested that, unless
an improved DV index can be formulated to form composites in a way that better
replicates the original concepts of Horst (i.e., ensuring overlap of tests across
job families and the contribution of differential weights), predictive validity
provides the best approach for maximizing the classification efficiency of
tailored job family composites selected from a previously selected battery (see
Table 6).

The choice of selecting predictors for a single battery or directly for
tailored composites is the third issue in Figure 4. The results of Experiment
1 indicated that the gain in classification efficiency over chance assignment
resulting from the use of a set of tests selected separately for each job family
can be considerable when compared to the use of a single set of tests selected
to constitute an operational battery when the two alternative strategies are
matched on size of AVs rather than on battery size. A finding of practical
significance, for example, was that the selection of a three-test composite by
predictive validity provided a gain of .071 standard scores over a single three-
test battery selected from the 29 tests (see Table 5). Similarly, the five-test
composite improved by .074 in MPP over the best single five-test battery and the
nine-test composite improved by .061 over the best single nine-test battery.

A similar pattern emerged for the selection of three- and five-test
composites from the ASVAB. The gain in MPP from separately selecting the tests
using predictive validity in each three-test ASVAB composite was .087 over the
selection of a three-test battery combined with use of 3-test composites.
Equivalent or greater gains could be achieved by increasing the size of the
single operational battery from three to five (.073 MPP gain) or nine (.110 MPP
gain). The use of both techniques (i.e., separate test selection for composites
and the increase in composite size to five) provided similar gains of .101 in MPP
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Figure 4

Differences between Selection

and Classification Approaches

to the Design of

Composites

Theoretical/Practical VG with g° DAT

Issues

1. Selection of Maximize predictive Maximize differential validity
predictors for an validity for classification and
operational predictive validity for
battery selection

2. Selection of Maximize predictive Maximize predictive validity

predictors for
tailored job
family composites

3. Selection of
predictors for
batteries versus
tailored
composites

4. The test pool from
which predictors
should be selected

5. Best composite
size '

6. Composite test
weighting

7. Job family

validation samples
used to estimate
regression weights

validity

Two- or three-test

composites minimize
unstable regression
weights

Pool most often
consists of cognitive
ability type
predictors (e.g.,
ASVAB)

Three tests are
adequate

Unit weights provide
little if any loss in
predictive validity

Analysis sample
should be at least
5,000. Small samples
cause sampling error
which explains much
of the variation
between validities
across jobs

Least squares estimates of the
criterion used for tailored
assignment composites, but DV
used to select batteries

Pool should consist of

cognitive and non-cognitive

measures (e.g., Project A

predictors) and vocational
information tests -

All tests in the battery
preferred; not less than five

Least squares weights modified
to be positive are stable and
provide adequate and
appropriate AV composites

Non-aggregated job family
regression weights provide
best estimate of betas for up
to N = 1200. Aggregated
samples for Nj > 1600. LSEs
provide improved and
substantial MPP for N; > 300.
Small samples cause sampling
error in test selection and
weights calculation. Larger,
but obtainable, samples result
in higher MPPs

Note. @ Entries attempt to reflect the position often held by some validity
generalization proponents who are also g theorists.
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over a single three-test battery. This gain is provided by a simultaneous
increase in both composite and implied battery size. Comparable gains (.096 MPP)
could only be achieved by the use of Hy as the selection index for the five-test
battery.

The advantages of composites over a fixed operational battery are obtained
at a cost of a major increase in the size of the implied operational battery and
consequent testing time needed to achieve the tailored composites. This drawback
is of greater concern with the use of the expanded pool of 29 tests for selecting
predictors. In these experiments, composites created from the ASVAB required
more or less the same implied battery (i.e., the ASVAB) as the size of the
composites increased from three to five to the maximum, nine. Taking the example
of the ASVAB FLS composites in Experiment 2 (N=1600), all nine tests were
selected for at least one job family in the three-test composites, resulting in
the maximum possible implied battery. Selection from the larger pool of 29
Project A tests caused a sizeable increase in the implied battery as the number
of tests in the composite increased. Using the same example, selection from the
29-test pool produced an implied battery of 13 tests to achieve three-test
composites, 20 tests to achieve five-test composites and 26 tests to achieve the
best nine-test composites. In terms of Brogden's equation for MPP, as the
implied battery increased, the intercorrelation between assignment variables (r)
decreased (from .30 to .29 to .28).

The fourth issue in Figure 4 questions the advantage of an expanded pool
of predictors from which to select for composites. Theories which rely on
maximum predictive validity, generally also lead to a reliance on measures of
general cognitive ability (g) as the best selection and assignment variables and
hence make no requirement for a more heterogeneous group of experimental tests.
Experiment 1 (which used some very small job family samples) indicated that the
only substantial gain from using the larger battery as the source of composites
occurred with nine-test composites (.042 MPP gain). The same MPP was obtainable
for a three-test composite whether the tests were selected from the ASVAB or the
29-tests. However, the gains obtained by adding additional tests to the
composite were greater when test selection was from the larger battery. In
Experiment 2, the 29-test battery exceeded the performance of the ASVAB in most
conditions, and by as much as .11 in MPP for the nine-test composites. As the
size of the analysis sample increased, gains of .05 and .06 in MPP for selection
from the 29-test set also became evident for the three-test and five-test
composites.

The fifth issue highlighted in Figure 4 concerns the effect of adding more
tests to the composite. ¢ theorists and validity generalization proponents have
promoted only the use of tests in composites which maximize predictive validity.
The practice has led to dependence on a single measure of general cognitive
ability (g), which provides the greatest predictive validity, and perhaps one or
two additional measures (such as psychomotor or perceptual tests) which provide
some incremental predictive validity. Both present experiments indicate that,
while predictive validity is the appropriate measure for selecting tests for
tailored composites, the effect of adding more tests to the composites is to
increase classification efficiency when tests are optimally weighted. This
effect did not appear to level off any faster than the effect of adding more
tests to an operational battery (i.e., somewhere beyond nine tests) when
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selection was from the 29-test battery. Only when unit weights were used did MPP
decrease as the composite size increased. It is also of some theoretical
interest that the effect on MPP of adding to the number of tests directly
selected for inclusion in each composite was quite similar to the effect of
adding additional tests to a battery when a PV index is used in both cases.

In Experiment 1, increasing test composite size from three to five provided
an average increase (per unit increment in the number of tests across all
conditions using the 29-test pool) of .013 in MPP standard scores. Comparing
this gain to the average gain of .012 when the composite size was increased from
five to nine, it appears that there was no levelling off of the MPP gain as the
number of tests reached nine. The selection of tests from the ASVAB, on the
other hand, did show a levelling off with the addition of more tests. When
composite size was increased from three to five, there was an average increase
in MPP of .007 compared to .002 from five to nine tests.

In Experiment 2, a consistent increase from three- to five-test composites
and from five- to nine-test composites was observed for the 29 tests when the
assignment variables were full least squares (FLS) composites. Selection from
the ASVAB showed less consistent gain and the use of unit weights completely
reversed these findings to produce an average decrease (per increment in number
of tests) of .015. Taken together, these results suggest that when assignment
composites are least squares estimates, the gain from additional tests continues
until somewhere beyond nine tests when predictor selection is from the 29-test
Project A pool. When unit weights are used for test composites, the effect of
adding tests results in an increase in the intercorrelation of assignment
variables (r) and the consequent reduction of MPP.

The sixth issue in Figure 4 addresses the appropriate weights for
assignment variables. DAT echoes Brogden by stating that FLS composites are
optimal in the back sample for the accomplishment of selection and
classification. One current popular approach reflected in the Army's system has
been the use of unit weighted composites with only three tests in each composite
for the purposes of simplification and stabilizing the effects of sampling error
on least squares weights and, in turn, predictive validity.

The findings of both experiments reported here indicated a gain from the
use of FLS composites with both positive and negative weights permitted compared
to alternative weight stabilization methods, and especially unit weighting, in
Experiment 2. Experiment 1 also indicated that other approaches to weight
stabilization maintained a high level of classification efficiency. 1In
particular, the restriction of weights to positive at the test selection stage
resulted in MPPs comparable to the best weighted composites selected from both
the ASVAB and the 29-test pool. Indeed, the loss resulting from the
implementation of this restriction was less than (about one-third) the loss from
decreasing the number of tests in the composite from five to three and permitting
negative weights. Thus the introduction of a positive-weights constraint during
test selection for FLS composites provides both stability of regression estimates
and gains in classification efficiency.

Issue 7 of Figure 4 addresses the size of analysis samples required to
conduct classification research. Experiment 2 indicated that utilizing the non-
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aggregated data for separate job sample regression weights provided stable
estimates of weights and increased classification efficiency at the smallest
sample size. As the analysis sample increased in size approaching the population
(i.e., N=1600), the aggregate and non-aggregate methods converged to no
difference. since at larger sample sizes, therefore, aggregate sample data
provides an improved estimate of population intercorrelations of predictors. The
final issue in Figure 4 differentiates the selection and classification positions
as to the appropriate sizes of back samples for test selection and calculating
weights. Most theorists use sampling error resulting from small empirical
validation samples as the major explanatory factor for variation across predictor
validities, leading to the position that once sampling error is controlled along
with other artifacts, validity generalization is more possible. The DAT position
also recognizes the effects of sampling error in back samples on test selection
and the calculation of regression weights. However, this is used to explain
reductions in classification efficiency rather than focusing on predictive
validity. The results of Experiment 2 indicated that classification efficiency
increased as the size of the analysis sample increased and that the results of
comparisons between other factors became more consistent. Larger sample sizes
apparently provide better estimates of population intercorrelations and
validities and, therefore, account for more accurate test selection and more
stable regression weights.

Theoretical Conclusions and Operational Implications

A major purpose of the study was to examine the usefulness of differential
assignment theory (DAT) in the resolution of practical issues that arise in
reconstituting aptitude area composites. Several DAT principles keyed to the
reconstitution objective were examined in the combined context of theoretical
expectations and study results. A reassessment of several DAT principles
relevant to the design of future classification systems and to the adjustment of
research methodology for future reconstitution procedures is provided in the
context of the results of this study.

DAT principles, believed to be sufficiently well-established to be
applicable to the construction of new and improved AA composites include the
following:

1. The best test composites for either selection or classification are
least squares composites (LSEs), although composites based on factors transformed
into simple structure can do almost as well if the job families are also in
simple structure (Statman, 1993).

2. An increase in battery size provides a steady increase in
classification efficiency, as measured by MPP, and a critical point where a
further increase in the number of tests would provide only a trivial increase in
MPP has not been established.

a. The relationships between MPP and number of tests in test pools,
operational type batteries of tests, and aptitude area type test
composites have important differences. Previous research established a
positive relationship between number of tests in batteries and MPP that
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continued up to n = 29; prior to this study no data were available
regarding the effect of composite size on MPP.

3. Brogden's 1959 model of MPP provides an approximation of the
relationships of the validities (R) of LSEs, the intercorrelation (r) among these
LSEs, and MPP; an increase in MPP will clearly result from an increase in R and
a decrease in r.

a. The value of R has a positive relationship to the number of
tests (n) in the AA composite, but the value of R rapidly approaches the
1imit that can be achieved by selecting from a given test pool as n is
increased.

b. The greatest hope for increasing MPP from either test selection
or from the reclustering of jobs into job families is in the obtaining of

a—smaller valve of re

c. A smaller value of r tends to result from an increase in battery
size, while the effect of an increase in composite size when tests are
selected from a fixed size battery is more likely to increase the value of
r, the use of unit weights instead of best weights also increases the
value of r.

4. sStatistical theory and the results of many empirical studies lead _to
the expectation that the sampling error in a validity coefficient has an
approximately linear relationship to the square root of the size of the average
analysis sample for each job family. .

a. The sampling error in MPP includes an aggregation of the
sampling errors of each assignment variable in each job family analysis
sample. The inclusion of several small job family samples will increase
shrinkage and reduce the stability of the MPP estimate more than will be
compensated for by an equal number of larger job family samples (on a
scale defined by the square root of N).

b. The nine job family analysis sample sizes of Experiment 1 range
from the four smallest samples of 129, 203, 289, and 464 to five above
average sized samples which together yield a mean N of 775, a combination
of Nj that yields more shrinkage and less stability than the smallest set
of equal sized Nj (N; = 400) used in Experiment 2.

5. Differential validity indices have proven superior to predictive
validity indices for sequential selection of tests for batteries where the
objective is to increase MPP obtainable from the use of FLS composites in making
optimal assignments to jobs: New research was required to determine whether
modified DV indices would provide a similar superiority for selecting tests to
be included in test composites for each job family.

The first of the DAT principles listed above has been consistently
confirmed during the past five years in every model sampling experiment involving
DAT conducted at George Washington University by Zeidner, Johnson and colleagues.
Comparisons were made between LSEs and LSEs modified to eliminate negative
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weights, or between LSEs and LSEs computed after all variables yielding negative
weights were avoided in the selection process. Further comparisons were made
between LSEs and unit weighted composites. Although a wide difference between
MPP provided by LSEs and by the use of unit weights was found, the unit weighted
composites based on test selection provided a sizable gain over the MPP provided
by a priori composites.

The second of the DAT principles has also been consistently confirmed for
batteries but do not appear to be unconditionally true for test composites used
as AVe. When the test pool is large enough so that the implied battery does not
quickly encompass the entire pool, it is the implied battery size rather than the
composite size that predicts MPP. on the other hand, when the implied battery
size and composite size become the same, as in the case of the ASVAB condition
in this study, MPP continues to increase slowly as tests are added to the
composites.

Under the ASVAB conditions of this study, even a 3-test composite would
include all the tests in the pool in at least one composite. An increase in MPP
is obtained as the composite size increases, but this gain is comparatively
small. It appears to be necessary to increase battery size in order to achieve
a major increase in MPP. Unfortunately, an increase in battery size is both
financially and administratively costly.

The third principle relies primarily on evidence from other studies (e.g.
Statman, 1993), but is consistent with results of this study. The importance of
r in the prediction of MPP cannot be minimized. Methods intended as means of
reducing r are always worthy of consideration in the reconstitution of either AA
composites or job families.

The fourth principle is also confirmed but the investigators, if repeating
this study, would use Nj = 1600 for all job families, instead of the Project A
sample sizes. While we are interested in seeing how much the shrinkage
phenomenon affects MPP in the smaller and irregular sample sizes of Experiment
1, we would have liked to have had a more stable depiction of the relationships
among the classification related variables than resulted from the use of such
small samples for some job families.

Note that the use of 9-test LSEs from the ASVAB as AVs provides as much MPP
as does the best 9-tests selected from the 29-test pool and used as LSE
composites. It is clear that the job family sample sizes used in Experiment 1
are not sufficiently large to justify changes in the ASVAB based on test
selection from the 29-test pool--regardless of which index is used. Much of this
weakness is due to the heterogeneity of the particular jobs found in the Project
A concurrent study, i.e., some of the combined jobs appear to provide as much
heterogeneity within job families as across job families.

The question as to whether the last of these principles, the superiority
of a DV index for selecting tests for batteries, can be extended to the selection
of tests for composites was answered with respect to Hgm. The principle still
holds with respect to assignment to jobs (as contrasted to the representations
of job families provided by the Project A data) and when test selection is also
for batteries (with assignment by FLS composites), instead of separately to AVs.
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Horst's index of differential validity (DV) cannot be used to select tests
separately for each job family composite without j ification you
result in an entirely different index.

It seems reasonable to assume that a different test selection method than
any of those investigated in this study--one which minimizes test overlap in the
composites while minimizing the loss in predictive validity--would be superior
to the PV index for the direct selection of tests for composites. Another
alternative DV index could be based on the elimination of “Brogden g" from the
R and V matrices of the analysis sample, providing a means of test selection that
would not be unduly effected by the presence of a non-productive g component in
some tests. The elimination of this component would reduce overlap in composites
and could not, except by chance, reduce R to an extent that is not offset by the
reduction in r. This issue with respect to composites was not resolved in the
present study.

The relationship of MPP to a number of conditions not previously
investigated are explored in this study. These conditions include the effective
use that unit weights and positive only weights has on the MPP provided by sets
of AVs. The AVs modified to have positive weights were otherwise close
approximations of LSEs, since the negative weights were usually small (and few
in number), the tests deleted in order to assure positive weights would not have
made other than small contributions.

While it was not predicted that unit weighted AVs would provide strong
competition to LSEs for use as AVs, the use of unit weighted composites
demonstrates the contribution that can be provided by test selection, even in the
absence of least squares weighting. It would appear that unit weighted
composites should contain more than three tests, and, possibly, some unit
weighted composites should not exceed two tests to achieve maximum potential
classification efficiency.

From a theoretical point of view, the steady and early decrease in MPP as
the number of unit weighted tests in a composite is increased demonstrates how
important r is as compared to R in unit weighted composites. These results show
that the number of overlapping tests in a set of unit weighted test composites
is very important with respect to the potential classification efficiency (MPP)
of the system.

An analysis of existing data to provide a proposed reconstitution of the
Army aptitude areas is expected to begin in the fall of 1993. A number of the
issues investigated in this study pertain to how samples and sets of predictor
variables should be selected for analysis, and how tests should be selected for
job family composites. However, the results of this study have other operational
implications that concern future, longer range, applied studies for the
improvement of the operational classification system.

It is important to pay particular attention to the size of the smaller
validity samples used to compute AVs. Serious consideration should be given to
the job families for which the combined analysis sample sizes are less than 1000
(but Nj > 2000 is highly desirable). Additional jobs should be added to achieve
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this minimum size, or job families should be combined. Large job families should
be considered for shredding into two or more homogeneous job families in order
to provide a better quality distribution as well as to provide a higher overall
MPP.

The higher level of MPP provided by assignment to jobs, as compared to
assignment to the operational job families (as represented by the jobs in the
Project A concurrent study), leads to the conclusion that some of the LSEs are
not appropriate for assignment to all of the jobs contained in one job family.
Oon this basis, the importance of choosing a set of jobs that can accurately
represent each job family in a particular analysis intended to identify the LSEs
for each job family should be emphasized.

The PV index should be used as the primary test selection index for
developing test composites until, and if, further research can establish the
effectiveness of a DV index which can reduce test overlap (i.e., reduce r) while
minimizing a decrease in R. Any test index used to select tests for operational
composites should be modified to reject tests yielding negative weights in a LSE.
The MPP provided by use of the PV index is impressive and can be expected to
provide a major improvement in classification effectiveness, even if the further
gain that might be provided by use of an improved DV index is not immediately
available.

The test selection index with the greatest potential for showing a
superiority over the use of R alone is believed to be the product of R and the
square root of (1 - r). The use of this index as the figure of merit for
fselectingutests_couidAbeuoptimally,implemented by selecting the best combination

of tests, rather than through the use of a sequential algorithm based on either
accretion or deletion. The process of seeking optimal combinations of tests for
a figure of merit that includes r will require an iterative estimation of the
other 8 AVs while computing an average r to permit the finding of the best
interim AV for each job family.

The non-aggregated analysis samples should be utilized for both test
selection and computation of weights for operational test composites. Aggregated
analysis samples remain appropriate for use as a designated population and as the
source of DV indices for the development of batteries. An adequate sized N is
especially important for research situations where an aggregated analysis sample
is to be used.
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Appendix A: Criterion Issues Important to the Conduct of Selection

and Classification Research

This appendix expands explanations of criterion issues partially
explained in the main body of the report and introduces additional criterion
related issues. The discussion of these issues are intended to assist in the
interpretation of our experimental results in the context of DAT--both in this
and previous research. Clarification of the issues treated here have
considerable importance as to how future DAT research should be conducted and
to the design of improved selection and classification systems incorporating
DAT principles.

We discuss criterion issues in four categories: (1) differences in the
core technical proficiency (CTP) criterion between Batch A and Z jobs--when
optimal assignment is to a set of jobs that includes jobs from both batches;

~—~— ~{2)" choosing CTP from -among five -available- criterion—components for the

conduct of classification research, although all five are considered to be
important for the conduct of selection research; (3) choice of a criterion
variable when comparing the efficacy of one-stage and two-stage selection and
classification strategies; and, (4) the effect of grouping either predictor or
criterion scores into intervals.

1. Batch A. vs. Batch Z Criteria

The CTP criterion component can be divided into a “hands on”
subcomponent and a carefully crafted job information subcomponent; both
subcomponents being job specific. The CTP criterion for Batch A jobs consist
of a combination of both subcomponents while the CTP criterion component used
in Batch 7% jobs does not contain a “hands on” subcomponent. Both in the
present research and in several previous research efforts, one of the 19 MCS
for which criterion and predictor data was available from the concurrent study
of Project A was eliminated because of a very small sample size.

In the previous research the remaining 18 jobs were equally divided into
Batch A and Z sets. Thus optimal assignment to no more than nine Jjobs could
be accomplished without using predicted performance based on differing types
of criterion variables in the same assignment process. One question that can
be raised concerns the effect of using different types of criterion variables
in the same assignment and evaluation process on classification efficiency
results. The 9 MOS in each batch were considered separately and together in
several model sampling experiments comparing the efficacy of differential
validity (DV) and predictive validity (PV) indices for selecting tests to be
used in classification test batteries, and for comparing the MPPs provided by
optimal assignment to 9 and 18 jobs (Johnson, Zeidner, & Scholarios, 1990).
The gain in MPP resulting from using the DV index compared to the PV index was
.048 in the 9 Batch A jobs as compared to .036 in the 9 Batch Z jobs, and
-.008 in the combined set of 18 Jjobs. The heterogeneity of job criteria
definitely reduces the sensitivity for detecting a superiority of DV compared
to PV indices for use in selecting tests for batteries.
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There is a surprising reduction in the gain in MPP, one not predicted from

DAT, resulting from the substitution of DV for PV indices--when all 18, instead
of 9, jobs are utilized as surrogates for job families in the assignment process.
This reduction might be at least partially explained in terms of the
heterogeneity of the criterion variables across the two halves of the 18 job set.
However, the major reason for using all 18 MOS together was to investigate the
gain in MPP resulting from increasing the number of assignment targets
(surrogates for job families) from 9 to 18. The amount of gain from using 18
assignment targets instead of 9 jobs was approximately what we expected from a
consideration of Brogden's 1959 model and DAT. Better but comparable results
were obtained by Johnson, Zeidner, and Leaman (1992) where differing numbers of
job families could be compared in a model sampling experiment using SQT as the
_ . ._eriterien-variable for. all MOS and job families. Obviously, the criterion

heterogeneity across the batch A and Z jobs did not interfere with DAT
predictions regarding the effect of increasing the number of job families had on
classification efficiency.

Since the present study makes optimal assignments to job families, rather
than to MOS, any effect of criterion heterogeneity is greatly diluted. Our use
—— ——of —the-concurrent data- results-in most _job_families being represented by one

Batch A MOS and one Batch Z MOS. However, one Batch Z family (i.e., electronics)
contained only one MOS. In this latter case, sampling error due to the small
size of the validity sample (N = 123) was of more concern than was the lack of
a "hands on" criterion subcomponent in the job family criterion.

2. Selecting a Criterion Component for Use in Classification Research

Ideally the criterion variable is a measure of the capabilities good
performers possess to a greater extent than do poor performers. Thus, the value
management places on employees in a given job is believed to be highly correlated
with the amount of these capabilities displayed on the job. Some of these
capabilities, particularly in the Army and Marines, are required to a similar
degree in all jobs. The five Project A criterion components contain only one
which could be reasonably specific to a designated MOS.

It would appear that the designers of the Project A criterion components
deliberately constructed only one of these components (i.e., CTP) to be job
specific. For example, it would have been possible to construct a job specific
leadership subcomponent for each MOS for which CTP was constructed. Instead,
the project A criterion designers defined and developed a general Army wide
leadership component. A job specific leadership component would have emphasized
managerial capabilities for some MOS, ability to provide technical instruction
and guidance to a technical process in some MOS, being a role model in various
job specific ways in others, and, in still others, inspire subordinates to follow
the indicated individual into dangerous situations.

While all five of the Project A criterion components are clearly
appropriate for use as criterion variables for selection research, only one
appears appropriate for classification research. The empirical research reported
by Wise et al. (1990) supports this conclusion. The inclusion of these other
four criterion components in the research criterion used in a developmental
process for a classification system would, at best, have the same effect as the
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addition of either sampling error or otherwise irrelevant variance. An increased
sample size can compensate for an increase in unbiased error variance during
research. '

The most intuitively obvious effect of adding components to a criterion
composite that are effective for selection, but not for classification, for use
in developing a personnel classification system is the addition of variables
which primarily measure Brogden's g, predictors which are equally valid across
all job families. The other four Project A criterion components appear to be
heavily loaded with Brogden's g. Brogden theorized and provided credible proofs
that the addition of such variables had little or no effect on classification
efficiency (Brogden, 1959, 1964).

If the addition of components containing little or no relevant
classification variance has no bias other than an excessive loading on g, the
dilution of the composite criterion through the use of these components will not
bias decisions made regarding test selection or computation of weights for tests
in AVs. This particular lack of bias is because the same test battery can
approach the maximum for both selection and classification: the increase of
selection efficiency does not decrease classification efficiency if this done by
increasing the amount of Brogden g in the tests included in the battery.
However, the introduction of Brogden g into the criterion variable will provide
an unfortunate bias with respect to most other system design choices that affect
classification efficiency in the design of a personnel classification system.

- Even if there was no bias_introduced through the inclusion of a criterion

o az= 1

component that is irrelevant to classification, it is certain that this inclusion
will reduce the sensitivity of a composite criterion regarding classification
system design decisions. The use of a larger sample size can replace this
sensitivity, if, and only if, the addition of Brogden's g to the joint predictor-
criterion space was the only effect of adding the irrelevant components.

Very biasing effects of including irrelevant components in a criterion
composite can be expected when the criterion is playing the role of an evaluation
variable, that is, for obtaining the test weights to be applied to predictor
scores to create an evaluation variable. While the effect of using a composite
criterion instead of CTP in the process of obtaining AVs may be easily
counteracted by increasing the size of the Ns in the validation samples, a quite
different result can be expected from including the irrelevant components in the
evaluation criterion. Thus inappropriate decisions regarding system design and
strategies would result from the use of these irrelevant components as a part of
the evaluation criterion variables.

One can subject the effect of using the different possible criterion
variables in the analysis sample to a scientific test with respect to an agreed
upon criterion variable used in the evaluation process. If the agreed upon
evaluation criterion is CTP, we believe the use of the composite criterion
variable used in conijunction with appropriately larger sized Ns to form AVs would
provide essentially the same sized MPPs as when CTP is used to form AVs. 1In
contrast, the use of a composite containing the four Project A criterion
components other than CTP as the evaluation variable would not provide an MPP
significantly different from zero for any method of forming AVs. .

47




Consider a criterion component for possible addition to an already existing
criterion composite. Assume the new component under consideration measures an
attribute highly important to job performance that is not adequately measured by
the existing criterion composite. Also assume that the component, unlike the
composite, lacks key psychometric characteristics highly desirable for
classification research while both composite and the component possess the
psychometric characteristics most essential for selection research.

We will consider two possible roles for the augmented composite's candidate
component, for use in: (1) an analysis sample to select tests for batteries or
AVs, compute test weights, cluster jobs into families, etc.; and, (2) to compute
test weights for evaluation variables (i.e. predicted performance) to provide MPP
scores for making a variety of system design decisions.

We believe that if the objective is to provide classification efficient
test batteries, assignment variables, or both, the use of the augmented
composite will provide little or no harm when used in the first role. For
example, tests with a higher relationships with g would undoubtedly result from
substituting the augmented composite for the previous classification efficient
criterion composite. DAT predicts that selecting and adding tests with higher
g loadings would have 1little effect on classification efficiency other than
requiring larger samples sizes to conduct research. Most other system design
decisions (other than test selection) made independently of the evaluation
process, as in role 1, would be biased by the addition of a criterion component
which is inappropriately loaded with g.

It is generally true that variance in a criterion component that is
irrelevant to classification, will, if other than error variance, be correlated
with measures of selection efficiency and other system characteristics that may
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composite is to perform role 2, critical decisions regarding the design of a
classification system will be biased by the inclusion of a criterion component
that is relevant for selection , but not for classification.

The appropriateness of a criterion component for use as a measure of the
value of a soldiers capability to perform on an Army Jjob can be disputed by
showing that the component has undesirable psychometric qualities. However, a
criterion component must also measure a performance capability that is judged to
be essential to the accomplishment of job duties. Even if the component can be
validated against a more ultimate criterion variable, the relevance of that more
ultimate criterion has to be established by judgment. However, assuming that a
component passes the judgment test, we can still reject a component for use as
either a selection or classification criterion if it fails to pass certain
psychometric tests.

To be appropriate for selection research, a criterion component should be
a reliable measure of capabilities required in either all, or at least a
substantial number, of the jobs to which a selected individual might be assigned.
In addition to measuring a capability required for job performance at the desired
level, a criterion component being considered for use in selection research
should be required to pass a psychometric test, a requirement which is
comparable to, but different from, the psychometric test we believe should be
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applied to criterion components being considered for use in classification
research. For example, a criterion component being considered for use in
selection research should be scaled in such a way that experimental conditions
can be expected to affect component scores at the performance levels considered
to be most important for system utility. No matter how important expert judges
consider the attribute believed to be measured by the criterion component, if
the actual measure is not sensitive to differences in the amount of this
attribute possessed by a soldier at the desired range on the measurement scale,
the criterion scale should not be included as a part of the criterion variable
for selection research.

The use of both selection efficient variables and classification efficient
variables, if introduced into a battery through the use of a criterion variable
deemed to be suitable for both selection and classification processes, will not
measure either the total system potential for either selection nor
classification. However the use of a criterion not suitable for selection to
make choices concerning selection systems can harm SE, and similarly, the use of
a criterion not suitable for making assignments across jobs can harm CE.

In summary, it would appear that the use of a composite criterion that is
unbiased except for the heavy loading on g of some of its components will do
little harm to the construction of AVs to be used in the classification process
This harm can be usually remedied by the use of a larger N in the analysis
sample. However, a composite criterion that has such a large loading on g as to
make the component irrelevant to classification, could adversely affect many
other kinds of system design decisions, as compared to the use of a criterion

variable that is entirely classification retevant. Any selection/classification
system bias, other than the inclusion of Brogden g, can adversely affect all
decisions regarding system features. Even the presence of Brogden g constitutes
a serious bias with regard to many system design decisions. We believe the best
overall selection and classification system can be obtained, using the current
state of the art, using separate criterion variables for selection and criterion
research in the design of a two-stage selection and classification systemn.
Further basic research, with particular focus on criterion issues, must be
successfully accomplished before a one-stage simultaneous selection and
classification system can be designed and installed--unless a criterion like CTP
or SQT for use in both selection and classification research is acceptable to
both researchers and management.

3. Criterion Issues Bearing on the Comparison of Two vs. One stage Strategies

The traditional two-stage strategy calls for selecting from an applicant
pool into the organization (e.g., Army) using a single selection variable (SV).
The AFQT is presently the SA for all services. However, a better measure of g
would most likely provide greater selection efficiency (SE). The second stage
classifies selected personnel to job families using aptitude areas as assignment
variables (AVs), and then assigning to an MOS within the appropriate job family.
B one-stage strategy calls for the simultaneous selection, classification, and
assignment using the same AVs to effect both selection and assignment to MOS.
Although the one-stage strategy is more efficient and equitable under certain
assumptions, the two-stage strategy is the one used by all services and is the
one simulated in this research study.
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A one-stage, simultaneous selection and classification strategy, is clearly
superior to a two stage strategy when both stages are evaluated in terms of the
same criterion variable as is used to evaluate the one stage strategy (Johnson
and Zeidner, 1991; Whetzel, 1991). However, this superiority cannot be expected
to hold if the best criterion variable for each of the two stages is used to
design and evaluate the corresponding stage (as recommended above).

As stated above, we believe it is usually desirable to utilize a different
criterion variable when conducting research on selection of applicants for
admittance into an organization, as contrasted to the best criterion variable
for use in conducting research on personnel classification. If no classification
efficient criterion exists, new employees who have already been accepted into the
organization may just as well be randomly assigned, or assigned in accordance
with criterion neutral preferences.

When a classification efficient criterion is available, a two-stage
strategy will usually be profitable. With such a strategy, selection can be
viewed as a preliminary process which can have considerable effect on the

nrocess; the lower the selection ratio (SR) and/or the greater the
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selection efficiency is, the higher will be the MPP obtained in the second stage
that is entirely due to the classification and assignment process. 1In contrast,
a change in the efficiency of the second stage has no effect on the efficiency
of the first stage.

4. The Differing Effects of Grouping Scores into Intervals for Selection vs.
Classification Research

The use of operational decisions such as: (1) pass vs. fail in schools, (2)
non-promotion vs. promotion, or (3) no special recognition vs. special
recognition, is occasionally proposed as a more realistic alternative to the use
of performance evaluations or job knowledge tests that yield many intervals in
the distribution of criterion scores. The use of simulation models which call
for using a small number of intervals in either the assignment variables or the
evaluation (i.e. utility) variables is also tempting.

It is well known that decreasing the number of intervals on a criterion
scale from a moderately large number to two, thus creating a dichotomous
variable, or to 9 (resulting in stanine scores) will decrease the magnitude of
validity coefficients. The differing effect that results from reducing the
number of intervals in the upper, or alternatively in the lower, half of a
criterion distribution when using SRs less than .5--in personnel selection as
compared to classification research--is not so well known. Model sampling
research in which the reduction in magnitude of MPP resulting from the reducing
of the number of intervals in the assignment variables in an optimal assignment
process are reported by Sorenson (1967).

Sorenson showed that grouping continuously distributed assignment variable
scores into 9 intervals has much more effect on classification efficiency than
on selection efficiency. He also showed that if the entire range of scores is
represented by a small number of intervals, it is better for a classification
process to concentrate these intervals in the upper half of the range than in the
lower half. This contrasts with the selection process where there is more
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advantage in using smaller intervals in the lower half of the range of RV scores.
For similar reasons grouping criterion scores into intervals is more damaging to
classification efficiency than to selection efficiency. It is essential that the
full range of criterion scores be utilized rather than the substitution of
pass/fail, satisfactory/unsatisfactory, or similar dichotomous variables when
classification research is conducted.
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